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Summary

An objective and quantitative method has been
developed for deriving models of complex and
specialized spheres of activity (domains) from domain-
generated verbal data. The method was developed for
analysis of interview transcripts, incident reports, and
other text documents whose original source is people
who are knowledgeable about, and participate in, the
domain in question. To test the method, it is applied
here to a report describing a remote sensing project
within the scope of the Earth Observing System
(EOS). The method has the potential to improve the
designs of domain-related computer systems and
software by quickly providing developers with explicit
and objective models of the domain in a form which is
useful for design. Results of the analysis include a
network model of the domain, and an object-oriented
relational analysis report which describes the nodes and
relationships in the network model. Other products
include a database of relationships in the domain, and
an interactive concordance. The analysis method
utilizes a newly developed relational metric, a
proximity-weighted frequency of co-occurrence. The
metric is applied to relations between the most
frequently occurring terms (words or multi-word
entities) in the domain text, and the terms found
within the contexts of these terms. Contextual scope is
selectable. Because of the discriminating power of the
metric, data reduction from the association matrix to
the network is simple. In addition to their value for
design, the models produced by the method are also
useful for understanding the domains themselves. They
can, for example, be interpreted as models of presence
in the domain.

Introduction

The design of a computer system that is intended to
support a complex and specialized sphere of activity,
a domain, must embody a model of that activity in
order to be effective. Designers rely on analysis of
the relevant sphere of activity, a process called
domain analysis, in order to obtain a model of the
domain. A domain model serves as a framework for
organizing a domain system, that is, computer
hardware and software which gather, manipulate, and

distribute information concerning the domain and its
participants. Domain modeling requires the relevant
aspects of the domain to be mapped to logical forms
which can be applied to the design of system
components, especially the design of software.
Characterization of the structures and functions that
are important in the domain requires the analyst to
reliably learn about the important conceptual and
tangible objects in the domain, their key attributes
and essential actions, and other important
relationships among these objects. This information
can be integrated to form an explicit model of the
domain for use by software designers. The model can
also be used by those who wish to understand the
organization and operations of the domain so that
aspects of the domain itself can be improved.

Subjectivity in domain analysis can reduce the utility
of the resulting domain model and can lead to
misinformed system design and inadequate service to
the domain. Further, the complexity of those
endeavors which require computer systems does not
yield to ad hoc analyses. Effective domain analysis
requires objective characterization, along with
supporting quantitative metrics, in order to provide
useful models of domains to the designers of domain
systems.

Verbal data can be a useful source of information
about specialized domains of activity. Every
important domain is built upon countless words in
innumerable documents, and increasingly, many of
these documents are accessible in digital form. The
ability to automatically, objectively, and
quantitatively model important patterns in selected
documents in this large collection of verbal data
would be valuable to domain analysts. In fact, verbal
data analysis is a central theme of research in many
fields, including database design, artificial
intelligence, knowledge acquisition, computational
linguistics, and object-oriented analysis (OOA).
Work in these fields suggests ways that verbal data
might be processed to better support analysis and
modeling of specialized domains.

Network models and verbal data analysis

Common to many of the fields which conduct verbal
data analysis is the use of networks as a basic



2

modeling form. As discussed below, the entity-
relationship data model, semantic networks,
association-based models of expertise, on-line lexical
databases, and object-oriented models all utilize
networks to organize and represent entities and
relations for verbal data analysis. Networks are built
of nodes, directed arcs, and annotations. Node and
arcs are assigned a variety of meanings, but typically,
nodes represent entities (identifiable things or ideas),
arcs represent relations (associations) among nodes,
and annotations label, quantify, and otherwise
describe the nodes and arcs. The meaning of the term
"entity" as used in different fields varies. In this
paper, it is used to denote a separable and identifiable
thing, idea, action, attribute, or attribute value
belonging to a domain. The term "object" is used to
refer to separable and identifiable things or ideas, and
it denotes objects in general, classes of objects, and
specific instances of objects.

The entity-relationship model was created to provide a
generalized data model that "adopts the more natural
view that the real world consists of entities and
relationships" (Chen 1976, pg. 9). Thus, using this
data model, verbal and other information relevant to a
domain is modeled in the database as entities and
relations. Accordingly, entities are grouped in "entity
sets," which are classes. Attributes and their attribute
values are associated with each entity. Relationships,
which have their own attributes and attribute values,
characterize a variety of associations among entities.
While Chen differentiates his data model from several
others, including one technically known as the
"network" model, his model utilizes the general notion
of a network, that is, nodes, directed arcs, and
annotations. The essential point, for the purposes of
this paper, is the fact that Chen's data model, which is
considered seminal, specifies entities, classes,
attributes, attribute values, and relations as the
essential ingredients for modeling a "real world"
domain, and these are represented using nodes, arcs,
and annotations.

Semantic networks were developed as a graphical
representation of "semantic memory" (Quillian 1968),
and have been adopted by the field of artificial
intelligence as a graphical form of predicate calculus
(Nilsson 1980). In both applications of semantic
networks, the networks consist of a collection of
labeled nodes connected by labeled associative links.
Most often, the network is created by hand in an
attempt to represent the precise meaning of a one or
several declarative sentences. The nodes can represent
terms in the predicate calculus that are identified with
individual words, especially nouns, or more complex
structures. The associative links can represent
predicates in the predicate calculus that are identified
with verbs, or with categorical or organizational
relations such as "is a kind of," or "is a part of," which

are sometimes called functions or mappings. The
nouns, verbs, and functions in a sentence are
interpreted as corresponding to things, actions, and
mappings in a domain of discourse. The goal of those
who use semantic network notations has typically been
to investigate the nature of human or artificial memory
via a concrete representation. The focus has generally
been on a very fine-grained, manual analysis of a small
number of sentences.

While formal verbal data analysis is only one of many
knowledge acquisition methods (Boose 1989), the
conceptual models produced by efforts to elicit expert
knowledge are usually in the form of linguistic
structures (Shaw and Woodward 1990). Further, most
knowledge acquisition methods depend upon spoken
communication between domain experts and
knowledge engineers, and interviews are perhaps the
most common method of elicitation. Other methods
include verbal protocol analysis (Ericsson & Simon
1984), for which the expert introspects and "thinks
aloud" during a task or in retrospect, and automated
textual analysis. Automating the understanding of
general knowledge about a specific domain from text,
however, is a major theoretical and technical challenge.
The bottleneck in natural language understanding is the
lexicon, an area of intense research (e.g. Zernik 1991;
Miller, Beckwith, Fellbaum, Gross, and Miller 1990;
Grefenstette and Hearst 1992; Schütze 1993). While
unrestricted text cannot yet be automatically
understood in all its complexity, it is still possible to
derive useful information from it using computational
means.

Analysis of large volumes of natural language text is
central to the field of content analysis. An enduring
hallmark of content analysis is its emphasis on
mapping verbal data derived from public media to
socio-political thematic categories and a search for bias
or social influence. Much productive effort has gone
into the application and development of computing
tools for processing verbal data, including Key Word
In Context (KWIC) indices, mapping input to thematic
categories, and statistical analysis of text (Dunphy
1966; Krippendorff 1980; Weber 1990).

Osgood (1959), for example, developed one of the first
methods of computing the frequency of co-occurrences
of important terms and usages within verbal data, a
process he called "contingency analysis." The nature of
the co-occurring entities, the granularity of the contexts
in which co-occurrence was identified, and the
multiplying factor, are important to note. Osgood
identified themes which he grouped in such categories
as: freedom, business, rugged individualism, youth,
and other socio-political concepts.  He considered one
or more co-occurrences of two themes within an
approximately half hour speech to indicate a single
"hit," and the number of speeches (out of 38)
containing a hit equaled the co-occurrence metric value
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between those two ideas within the domain sampled by
the speeches. He used the results to produce a network
model of the ideas within the domain, which, at least
on one occasion, he instantiated as a physical ball and
stick model. The length of a stick was proportional to
the frequency of co-occurrence, although some
compromises were required because the dimensionality
of the model was greater than three. At the time this
work was done, the analysis was especially arduous,
which partly accounts for the coarse granularity of the
contexts (entire speeches), and the lack of precision of
the multiplying factor (the number of speeches
containing one or more co-occurrences). Osgood's
essential contribution, however, was in his careful
attention to the importance of co-occurrence relations
among entities in verbal data. Although some
researchers in computational linguistics also use co-
occurrence information (e.g. Smadja 1991), the main
emphasis is on lexical co-occurrences such as "home
run," not the conceptual relations of interest to
Osgood.

The entities and relations of verbal data are of
paramount importance to the disciplines of
psycholinguistics and computational linguistics. For
example, WordNet, a computerized dictionary based on
psycholinguistic principles (Miller, Beckwith,
Fellbaum, Gross, and Miller 1990; Beckwith,
Fellbaum, Gross, and Miller 1991), organizes tens of
thousands of nouns, verbs, and adjectives according to
a well-defined set of linguistic relations, the most
important of which is similarity of meaning. Sets of
synonymous nouns are organized into topical
hierarchies based on hypernymy/hyponymy relations,
which are also known as superordinate/subordinate,
generalization/specialization, or "kind of" relations.
Nouns are related to those in other synonym sets by
holonymy/meronymy (whole/part) relations, and by
antonymy. Verbs are grouped by major semantic
category, such as: motion, possession, and
communication, and they are interrelated by
"entailment" (strict implication) relations. It is
important to note the psycholinguistic validity, as
indicated by the research underlying the design of
WordNet, of using "kind of" and "whole/part" relations
as the most important definitional relations among
nouns in synonym sets, since these are the same
relations emphasized in organizing classes/objects in
object-oriented analysis and design. It is also important
to observe that "general knowledge" (Miller 1990) or
"real world" relations among entities (Chen 1976),
such as environmental adjacency of objects which share
a physical context or the logical adjacency of objects
which share a conceptual context, are (intentionally)
not captured by WordNet's definitional relations.

Network methods have been developed for analyzing
"real world" relatedness among words which are
prominent in domain vocabularies.  In particular,

"Pathfinder" networks (Schvaneveldt, Durso, and
Dearholt 1989) have been interpreted as models of
expertise for application to skill level assessment
(Cooke and Schvaneveldt 1988), selection and training
(Schvaneveldt, Durso, Goldsmith, Breen, and Cooke
1985), user interface design (McDonald and
Schvaneveldt 1988; Roske-Hofstrand and Paap 1986),
and characterization of user interface designer expertise
(Gillan and Breen 1990). The data from which
Pathfinder networks are created are typically derived
from paired-comparison experiments, in which two
words at a time are rated in terms of their relatedness.
This provides a single relational weight per node pair
for each subject. Relatedness data have also been
derived using sorting methods in which words are
assigned to groups based on relatedness, providing a
relational weight of 1 among items in a pile for each
subject performing the sort. Scores are summed across
subjects to provide a relational metric based on
agreement among subjects. Another data collection
method is to note the sequence of command words or
button presses in a user interface and then to apply a
score of 1 to sequential adjacencies. As in the sorting
task, summation of the scores across subjects provides
an agreement metric. Unlike the sorting task, each
subject can produce a relational value of greater than 1,
as when there are repeated transitions from one item to
another. In the more commonly used paired
comparison or sorting methods of measuring the
relatedness between items, the context of the judgment
is typically a scenario described at the beginning of the
experiment. Further, the criteria of relatedness are
usually unspecified. The resulting association matrix
containing the relational weights is commonly reduced
to a spatial distribution of related items via
multidimensional scaling (Kruskal and Wish 1978), or
to a network of explicit pairwise relations via the
Pathfinder network reduction algorithm (Schvaneveldt,
Durso, and Dearholt 1989).

In seeking to eliminate non-essential domain relations
from their networks, users of the Pathfinder algorithm
endorse the assertion that a practical network model of
a domain must not include all possible relations
among all of the entities in the domain. If it did, the
model would be too complex for interpretation. Simon
(1969) offered the "empty world hypothesis" as an
explanation of the fact that simple models can provide
useful representations of complex and important
domains. His hypothesis implies that, due to the
redundancy in most complex structures, there are far
fewer than NxN relations of importance among N
domain entities. "[F]or a tolerable description of reality
only a tiny fraction of all possible interactions needs to
be taken into account" (pg. 221). This suggests that in
order to describe the salient entities and relations of a
domain, one should first identify the domain entities
of importance and then reduce the total number of
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possible relations among them to the few relations
which are of particular importance to that domain.

 (It is helpful to be explicit about the number of
possible relations among N entities. There can be NxN
relations among N entities if the relationship R(A,B),
with A and B being among the N entities, is distinct
from R(B,A), if R(A,B) accounts for all relations from
A to B and R(B,A) accounts for all relations from B to
A, and if the reflexive relations R(A,A), R(B,B), etc.
are included. If one is concerned with directed
connections apart from reflexive ones, there are (NxN)-
N or N(N-1) relations of interest. If one is only
concerned with a directionless connection between A
and B, and in addition, one is not interested in
reflexive relations, then there are N(N-1)/2 pairwise
relations of interest among the N entities. More
formally stated, the number of combinations of N
items taken two at a time without replacement is
N!/(N-2)!2!, which is equal to N(N-1)(N-2)!/(N-2)!2!,
which equals N(N-1)/2. If the reflexive relations are
indeed of interest, this becomes N(N+1)/2. Since in the
general case it is not assumed that interactions between
entities are directionless, and the relation of an entity
with itself is not excluded, the maximum possible
number of relations among N entities is considered, for
the sake of discussion, to be NxN, that is, N squared.)

Domain-based, object-oriented software

The object-oriented paradigm (Booch 1991; Coad and
Yourdan 1991; Dillon and Tan 1993) is particularly
appropriate for mapping real-world domain models to
software implementations (Fichman and Kemerer 1992;
Monarchi and Puhr 1992; Laurini and Thompson
1992). The object orientation, with its emphasis on
objects derived from the vocabulary of the domain, is
complementary to the procedural orientation, which
emphasizes the order of events. The object-oriented
domain model is especially useful for representing and
interpreting the enduring structures of domains,
integrating the logical and physical entities of
importance into a coherent relational framework (Booch
1991; Coad and Yourdan 1991; Dillon and Tan 1993;
Graham 1994). Further, the object-oriented approach is
specifically intended to improve the isomorphy of the
mapping from a domain to its software representation.
Of particular importance in an object-oriented analysis
is the identification of classes/objects, attributes of
objects, attribute values, the actions associated with
objects, and the relations among objects. The class
relations among objects are represented in a
superordinate/subordinate ("kind of") hierarchy, and
structural relations among objects are represented in
whole/part hierarchies. The relations between objects
and their attributes, attribute values, and actions are
implicit.

Chen (1992) asserts that before object-oriented designs
can proceed effectively, users' mental models of their
domains must be made available. It is difficult, Chen
argues, to obtain mental models that are appropriate for
object-oriented design because there are currently no
objective and quantified methods for obtaining these
kinds of models. Accordingly, new knowledge
acquisition methods might be needed to obtain these
specialized domain models. Kaindl (1994) compares
object-oriented analysis with knowledge acquisition
itself, and finds that they have much in common. In
particular, they both require a process of discovery so
that the domain of interest can be modeled, and the
system requirements specified. Kaindl also asserts that
networks of relations among objects are similar to the
conceptual structures used by knowledge engineers. He
suggests that textual documents which specify system
requirements should be implemented in hypertext so
they can explicitly represent that conceptual structure.
Thus, he endorses the notion that networks of related
domain entities are implicit in specification documents
and that they can be made explicit using hypertext or
object-oriented networks.

The idea that a text document can be usefully
transformed in order to specify the design of software
was first put to the test by Abbott (1983). He
transformed informal, written procedural descriptions
into computer programs. As examples, Abbott wrote a
description of a function to compute the number of
days between two dates, and a high level description of
a function to produce a KWIC index on titles. While
he considered his task to be transformation rather than
modeling, and emphasized a procedural rather than an
object-oriented view, it is interesting that Abbott
favored a linguistic approach and suggested an object
oriented view of the problem to be solved. Abbott
argued that there is an important correspondence
between nouns and objects, and he used parts of speech
as a starting point for the specification of variables,
values, subroutines, and the like. This suggested the
important potential of linguistic analysis for object-
oriented modeling. It is, however, a serious weakness
of Abbott's approach that he himself wrote the text
which served as the basis of his designs. While this
might be appropriate for the sort of examples he
addressed, it does not seem to scale up for application
to complex domains. For modeling of complex
domains, the source text should not be generated by
the software designer but by persons who are
knowledgeable about, and participate in, the domain of
interest. Apart from this concern for domain modeling,
which is more demanding than the task Abbott placed
on himself, the concept of deriving software
specifications from verbal data was seminal, though
not yet fully appreciated.
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Abbott's language-based approach has had some
influence on current thinking about object-oriented
design. Dillon and Tan (1993), for example, suggest
that an object-oriented analysis should begin with an
informal verbal description that is written by the
analyst. In their books on object-oriented methods,
Booch (1991), Coad and Yourdan (1991), and Graham
(1994) cite Abbott's work as a method worthy of
consideration, while cautioning against over-
dependence on it. The analysis of real-world user
domains (as opposed to small algorithmic examples),
they argue, requires a far more broad view than the
mere underlining of nouns and verbs to gather possible
domain objects and actions. Booch finds Abbott's
method to be useful due to its simplicity and the fact
that it forces the developer to work in the vocabulary of
the problem space. He claims, however, that the
method "definitely does not scale well to anything
beyond fairly trivial problems" (pg. 143). Graham
elaborates briefly on how the method might be
improved by more attention to the various kinds of
nouns and verbs. Coad and Yourdan also find merit in
the Abbott's language-based approach, but suggest
looking for key nouns and verbs in the widest possible
variety of domain-related documentation, not just
developer-generated domain descriptions.

Symbolic model of presence in a domain

Domain experts are immersed in the sensory and
symbolic experience of their domains. This immersion
is, in a very real sense, a combination of sensory and
symbolic presence, and one can interpret a domain
model as a model of presence. Not only do such
models have the potential to be generally useful to the
designs of all kinds of domain systems, they could
also be particularly useful for the design of virtual
environment systems (systems which surround users in
computer generated places, for applications including
visualization of scientific data, collaborative work
among geographically separated researchers, and remote
control of exploring vehicles).

Some organizing structure, formal paradigm, or model
must be adopted to map the experience of presence in a
domain to the unavoidably explicit formal model
embodied in computer software for the creation of
virtual environment systems. Typically, the sensory
aspects of presence receive most of the attention.
Certainly, it is very important to create sensory
simulations as one major component of virtual
presence. To design a virtual environment for a real
world domain, however, a sensory model of presence is
insufficient. A symbolic model of presence in the
domain is also needed. A symbolic model addresses
the cognitive dimensions of presence, representing the
associative experience of presence, not merely its
sensory aspects. While investigation of sensory

presence involves visual, auditory, tactile, and other
stimuli, investigation of symbolic presence involves
entities and relations. Similarly, while virtual sensory
presence demands generation of surrogate stimuli,
virtual symbolic presence requires generation of
surrogate logical and physical entities and relations.
Thus, the meaningful things in an environment,
whether concrete or abstract, their attributes and
actions, and their interrelations are of particular interest
in a symbolic model of presence.

There is some evidence that the symbolic component
of presence is characterized by persistent engagement of
the person present with metonymically related entities
(i.e., those related by logical and physical adjacencies
and associations) encountered in environments
(McGreevy 1992, 1994). This suggests that the
necessary symbolic model could be built upon the
logical and physical entities and relationships which
are prominent in a given domain. It would therefore be
useful, as a step in developing a model of presence, to
objectively and quantitatively analyze and describe
those domain entities and their interrelations.

Method

A semi-automated method of verbal data analysis was
developed which can be used to derive object-oriented
domain models from interview transcripts, incident
reports, technical reports, informal domain
descriptions, and other domain documents. It is
illustrated in Figure 1. The method produces object-
oriented networks whose nodes and relations are
weighted according to their prominence in the domain,
as represented by the analyzed text.  In addition,
descriptions of each node and relation are provided in
an outline form ordered by the weights. The method
was developed to address the need for a capability to
quickly and accurately produce an objective and
quantified object-oriented domain model in a form that
is useful for domain system developers.

In a previous domain analysis (McGreevy 1994), the
key domain entities were derived quantitatively and
objectively from the transcript of a field interview, but
the relations were inferred by the analyst from a close
reading of the text in the contexts of the important
entities. The new method improves upon this approach
by automating the relational analysis through a
quantitative analysis of the contexts of important
entities. Further, results are presented in a more
interpretable graphical form, and entities and relations
are described according to their prominence in the
domain.

The first step of the method is to obtain appropriate
domain text. The main criterion is that the text should
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be generated by domain experts themselves. Ideally,
the material will have been generated by the domain
experts for their own purposes. If the analysis is in
preparation for participant observation among domain
experts, reports concerning the domain that are written
by the experts of interest should be analyzed. If the
domain experts do not write technical reports, as with
pilots, it may be possible to obtain transcripts of on-
the-job communications or incident reports. Once some
initial insight into the structure of the domain has been
obtained from analysis of such material, it may be
possible to interview domain experts, whose answers
would provide additional text for further analysis in
order to test hypotheses about the model or the
domain, or to refine the domain model.

Once the text is obtained, it must be made available in
digital form and can be coded. If it is not already on-
line it must be digitized to ASCII form, that is, plain
digital text. The most direct way to do this is to use a
scanner and optical character recognition (OCR)
software. After hand-correcting the inevitable errors of
the OCR process, the text can be coded, a process
which is semi-automated. Coding reduces diverse
forms of words to their root or basic forms,
distinguishes between words with identical spellings
that represent either nouns or verbs or which have
multiple meanings, and links multi-word terms of
particular salience (such as "home run" or "New
York.")

Once the coding is done, the text is processed to
produce a list of the unique words in the text, each
with its frequency of occurrence, sorted in descending
order of frequency. From this list, the most frequently
occurring nouns, verbs, adjectives, adverbs, and
(optionally) first person pronouns are identified for use
as "probe terms." These words are initially considered
to be the most important ones in the domain text, and
the words that occur in their contexts are considered to
be importantly related to them. The most frequently
occurring articles, conjunctions, prepositions, non-
action and auxiliary verbs, and other thematically
uninteresting words are marked as weightless
(uncounted) place holders.

The key step of the method is then performed, in
which the proximity-weighted co-occurrence metric
values are computed for the most frequently occurring
terms, called "probe terms" (PT), relative to the terms
occurring within a small context or window
surrounding each probe term, called "terms-in-context"
(TIC). An appropriate context window size is the
average sentence length. An example of the calculation
of the relational metric is shown in Figure 2a for a
window size of 6. The example calculation of the
proximity-weighted co-occurrence relational metric
values is for twelve terms in the context of one
occurrence of one active probe term (PT). The active

probe term is the one whose contexts are being
processed. Other, non-active probe terms may be in
these contexts but they are considered as terms-in-
context. The sequence w1 through w12 (including PT)
represents a sequence of terms found in the analyzed
text. PT is a probe term and w1-12 represent terms
found in the context of PT, that is, they are terms-in-
context (TIC). In this example, the context window
size is 6, that is, it contains 6 words at a time as it
effectively slides along the entire text, moving forward
one word at a time. The rows a-h represent 8 positions
of the context window as it scans the text.

In window position "a" the probe term (PT) is not
within the window, so the relational metric value for
each word in the window is incremented by zero. In
window position "b" the probe term is within the
context window, so for each word within the window,
w2 to PT, the relational metric value is incremented
by 1. In window position "c" the metric values of
words w3 to w7 are each incremented by 1. By
position "h," the probe term is no longer within the
window, so no values are incremented for that
position. For the single occurrence of the probe term
shown here, the proximity-weighted co-occurrence
metric values of each word, relative to PT, are shown
in the bottom row of Figure 2a. Thus, for example,
the relational metric value of w5 is 4, indicating that,
for this one occurrence, the relation between PT and
w5 has a metric value of 4.

Note that the context window scans the entire text,
and whenever it contains the active probe term, the
relational values of terms in its context are
incremented in a manner similar to that shown here.
Thus, for example, if there were two occurrences of a
given probe term in the entire text being analyzed, and
if term w5 were in the same position relative to PT
both times, w5's total relatedness to PT in the text
would be 4+4=8. This value can be indicated as: co-
occ(PT,w5)=8, or R(PT,w5)=8. The method does not
use reflexive relations, so co-occ(PT,PT) is set to zero.

Use of the sliding window method causes an
asymmetry in the relations between some terms.
Specifically, the relational metric value of one probe
term, PT1, in the context of another probe term, PT2,
is not necessarily equal to the relational metric value
of PT2 in the context of PT1. This is because the
context of one instance of an active probe term stops
just short of another instance of the same probe term if
they both occur within the same context window.
Figures 2b and 2c illustrate this asymmetry. In the
example, co-occ(age,flow) is equal to 6 while co-
occ(flow,age) is equal to 4. Note that the smaller of
the two values is a result of the fact that potentially
overlapping contexts are, in effect, prevented from
fully doing so. In the example of Figure 2c, this
seems reasonable, since "age" is already in the context
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of the first occurrence of "flow" and "color" is already
in the context of the second occurrence of "flow."
Since cases with this extreme degree of proximity
between two occurrences of the active probe term are
rare, and since many contexts contribute to a final
relational metric value, the degree of asymmetry is
relatively small in most cases. The asymmetry issue is
addressed in more detail in the discussion section.

The relational metric values which are produced can be
displayed as an association matrix with the probe terms
defining the rows, and the terms-in-context defining
the columns. In practice, the probe terms themselves
are also found among the terms-in-context. The cells of
the association matrix represent the relations between
the row and column terms, and each cell contains a
relational metric value. A similar matrix can be pro-
duced by paired-comparisons, sorting tasks, and se-
quential actions (McDonald and Schvaneveldt 1988).

The overall process is one of identifying the most
important or prominent terms in the verbal data and the
degree of relatedness among the terms. This can be
visualized as starting with a WxW matrix whose rows
and columns are identical and which both contain every
unique term in the verbal data. This can also be
represented as a network of WxW relations (which
includes reflexive relations) among W nodes. The
method first identifies the N most important of the W
nodes, where importance is assumed to be highly
correlated with frequency of occurrence, and N is much
less than W. Next, the method determines the strength
of each of the relations among those N probe terms and
M terms-in-context. In practice, M is much greater than
N and some or all of the N terms appear among the M
terms-in-context. If a square matrix is needed for
application of data reduction algorithms, the matrix can
be padded with zeroes to produce an MxM matrix, or a
smaller square submatrix can be selected.

Several different approaches are available to reduce
the complexity of the data in an association matrix.
It is possible to apply multi-dimensional scaling
(MDS) or cluster analysis methods to the association
matrix to find overall dimensions of relatedness by
computing a spatial arrangement of the terms and
looking for patterns such as groups or other
distributions (Kruskal and Wish 1978). A different
approach is to apply the Pathfinder algorithm
(Schvaneveldt, Durso, and Dearholt 1989) to the
matrix, which preserves an interconnected network
while reducing it to a simpler one with certain
selectable features, such as the property that it
approximates a minimal spanning tree. MDS, cluster
analysis, and Pathfinder network reduction are
especially useful for reducing association matrices
having cell values that are rather uniformly
distributed, as is common with paired-comparison
data, but the relational metric values yield to more
straightforward data reduction. The cell values

(relational weights) produced by the proximity-
weighted co-occurrence method have a large dynamic
range, a small number of high values, and a rapid
fall-off from the highest values. This enables the
effective application of a threshold to select the most
salient relations by selecting the few having the
highest relational weights. This greatly reduces the
complexity of the final network while retaining the
top relations. This network provides the framework
for description of the domain. As will be shown,
Pathfinder networks do not preserve the relations
with the highest relational metric values, but they
provide useful supplementary representations of the
domain.

The next step is to produce a description of every
node and relationship in the final network. The nodes
and relationships in the final network are listed in
order of their importance to serve as an outline for a
document in which each one is described, the object-
oriented relational analysis report (see Appendix). All
of the nodes are listed and defined in order of the
total weight of relations in which they participate.
This ranks the nodes on degree of relatedness, which
can be con-sidered as a measure of the importance of
a node. Under the heading provided by each node,
the impor-tantly related nodes are listed, and each
relationship is described.

To generate the descriptions, the important nodes and
relationships are described in a weight-prioritized,
pairwise relational analysis. It is during this stage of
the process that the domain analyst must learn about
the domain. To do so, a concordance/KWIC index
(Thomson 1992) is used to extract one probe term
(PT) at a time from the original text, along with its
contexts. These contexts are reviewed in terms of the
relationship of that node with one term-in-context
(TIC) at a time. The benefit of the relational metric
method is that it provides the analyst with a focused,
prioritized, and efficient outline of the most
important entities and the most important
relationships in the domain.

The products of the method include: an electronic
database containing the most important relationships
among the most important entities in the domain; a
network model of the domain and optional
supplementary networks; a Key Word In Context
(KWIC) index in electronic form; and an object-
oriented relational analysis report containing
descriptions of each node and each relationship in the
network model of the domain.

The domain model produced by this method
illustrates Simon's empty world hypothesis. That is,
the method preserves only the small number of truly
prominent entities and relationships in order to
produce a simple but potentially useful description of
reality.
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Software for processing the text includes a mix of
commercial off-the-shelf software running on a
personal computer, Unix utilities running on a
workstation, specially written Unix shell scripts, and
freeware from Internet. The network figures were
generated from tabular data by a commercial software
tool called KNOT (Knowledge Network Organizing
Tool), from Interlink, Inc., Las Cruces, New Mexico.

Domain to be Modeled

A current domain of interest to NASA is the Earth
Observing System (EOS), an ambitious attempt to
create a globally comprehensive capability to monitor
and study the Earth's environment as an integrated
whole. EOS is a complex domain which must be
analyzed in order to provide designers with explicit and
objective domain models so that they can effectively
design EOS information systems. A recent study of the
state of scientific visualization relative to EOS
requirements (Botts 1993a and 1993b) indicates that
there remains a significant unmet need to effectively
map user requirements to system designs.

The key bottleneck in visualization tools for EOS,
according to the scientists responding to Botts' survey,
is lack of adequate software. In particular, many
respondents characterized their current visualization
tools as inflexible, not extensible, difficult to learn and
use, failing to provide integrated capability for both
visualization and analysis, too costly, and not doing
all that the scientists need to do. While there is not a
single solution, it is clear that a commonality of these
shortcomings is a failure of developers to fully address
the needs of users. It is typical of developers to give
very limited attention to the real needs of users (see
discussion in McGreevy (1994)), and to instead
concentrate on the challenges of implementation. Even
some who propose to develop domain-oriented
software (e.g. Tracz, Coglianese, and Young 1993) do
not make an adequate effort to discover user needs, but
instead expect the user to concisely package their own
requirements in a form that is immediately useful to
the developers. As an alternative to this unrealistic
approach, it would be helpful if reliable and valid
domain models could be made available to developers
so that they would have a correct understanding of the
needs of users such as EOS scientists without either
the developers or the users being required to perform
the difficult and time-consuming chore of developing
this model for themselves.

In order to approach the human-computer interaction
requirements for visualization and analysis systems
within such a complex domain as EOS, it is necessary
to select a very specific target. A first cut is to limit
the scope to that within one of the many EOS
Integrated Studies (EOS/IS) groups (Asrar & Dokken,

eds. 1993). The volcanology group ("A global
assessment of active volcanism, volcanic hazards, and
volcanic inputs to the atmosphere from EOS") was
selected, largely due to the author's desire to build
upon domain knowledge gained during earlier work in
field geology in volcanic terrain environments
(McGreevy 1993; McGreevy 1994). The scope of the
interests of the EOS/IS volcanology group is world
wide, involving a dozen or so lead investigators, so a
further scaling down is required, at least for the
development stage of the method.

The method of domain modeling described in this
paper was originally developed to analyze interview
transcripts, so one approach might be to interview one
or more members of the EOS/IS group, and to apply
the method to their answers. Since access to experts is
a limited privilege (Jorgensen 1989), the interviewer
must do considerable preparation in advance. One way
to do such preparation is to analyze more readily
available verbal data in advance of the field work.
Thus, the method can be applied at several stages of a
domain study. In this paper, since the method is new,
it was decided to first apply it to readily available
textual materials.

To select appropriate verbal data, it was noted that
several of the EOS/IS investigators had contributed to
the development of a CD-ROM set containing earth
sciences data thought to be representative of future
EOS data for a single volcano (NASA 1992). On that
CD-ROM, references to scientific papers were listed,
some of which were authored or co-authored by
members of the EOS volcanology group. One of these
papers, "Combined use of visible, reflected infrared,
and thermal infrared images for mapping Hawaiian lava
flows" (Abrams, Abbott, and Kahle 1991), was
selected for the initial textual analysis because the
paper described use of multispectral data to study
volcanic terrain. The abstract of the paper is shown in
Figure 3.

Once coded, the paper contains 3480 total words
arranged in 156 sentences, with an average sentence
length of 22 words. There are 831 unique words in the
text, of which 42 (including "a," "an," "and," etc.) are
considered to be weightless spacers, leaving 789
unique words of interest.

Ideally, the method of analysis applied to this domain
document, which produces an objective and quantified
domain model of rather limited scope, can be
developed and scaled up to address increasingly larger
contexts, that is, multiple authors, studies, interviews,
and other textual resources. This would allow it to
address the needs of scientists in an entire
Interdisciplinary Science group, such as the
volcanology group, and perhaps volcanologists in
general. Should the method be found to be useful, it
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could be effectively applied to other EOS/IS groups, as
well as to other domains of interest.

Results

The results include: 1) an electronic database
containing the most prominent relationships among the
most prominent entities in the domain, 2) a network
model of the domain and several supplementary
networks, 3) a Key Word In Context (KWIC) index in
electronic form, 4) an object-oriented relational analysis
report containing descriptions of each node and each
relationship in the network model of the domain.

The core results consist of weighted relations between
pairs of weighted nodes in a tabular database which
shall be called the R-list. As an illustration of the R-
list, the top 40 relations are listed in Table 1. There are
9075 records in the R-list, representing 9075 relations
among 789 unique terms. These were obtained by the
use of 50 probe terms (listed in Table 2) and a context
window size of 22, applied to the coded version of the
Abrams text. (Issues concerning the number of probe
terms and the context window size are addressed in the
discussion section.) Each record in the R-list represents
a proximity-weighted co-occurrence relation between a
pair of terms (nodes) in the text. There are generally
many records containing a particular probe term (PT) or
term-in-context (TIC) but there is only one record
containing any given ordered pair (PT, TIC).

Figure 4 is a graph of the 9075 relational metric
values in the R-list, sorted in descending order.
Relations with zero weight are not included in the
R-list. Clearly, only a small percentage of the total
possible relations have large weights. This seems to
be in accordance with Simon's empty world
hypothesis, indicating that of all the many possible
relations, only a very few are important for "a
tolerable description of reality" (Simon 1969, pg.
221). The method described in this paper depends
upon Simon's hypothesis being true for the domains
to be analyzed, and attempts to reduce the many
possible relations to the few which really matter.
The graph in Figure 4 shows that the method
identifies the desired small number of relations. In
later parts of this paper, evidence will be presented
to support the argument that these few relations do
indeed capture the essence of the domain. Of the
622,521 possible relations among the 789 unique
words in the analyzed text, the 789 reflexive
relations (i.e., those between each word and itself)
are not used, and, in this study, the method
eliminated (zeroed) all but 9075 of the remaining
621,732 relations. Of these 9075 relations, it can be
observed in Figure 4 that few have relational metric
values near the observed maximum of 314, and that
most are nearer to the minimum of zero. For
example, 1222 relationships have relational metric

values greater than or equal to 25, 386 relations
have values ≥ 50, 164 relations have values ≥ 75,
and 84 are ≥ 100. The number of relations required
for a domain model with an appropriate level of
detail is yet to be determined.

The first alternative form of the results is the
association matrix. The weights of the 621,732 non-
reflexive relations among 789 unique terms can be
represented as values in the non-diagonal cells of a
789x789 association matrix. The 789 cells in the
diagonal, representing reflexive relations between
each word and itself, are not used. Only 9075 of the
remaining 621,732 cells contain non-zero relational
metric values, and these 9075 relations can be
represented as an association matrix having 50 rows
and 789 columns. This matrix shall be called R-
matrix. The choice of 50 probe terms accounts for
the 50 rows. There are 789 columns because that is
the number of unique terms-in-context found in the
vicinities of the probe terms. As it turns out, the 50
probe terms picked up every one of the 789 unique
terms in the coded text as a term-in-context. Of the
789 terms-in-context, 50 are probe terms found in
the contexts of other probe terms. Thus, within R-
matrix there is a 50x50 matrix of relations among
the probe terms, a 50x739 matrix of relations
between the probe terms and all of the other terms,
and a variety of other submatrices, as discussed
below. Table 3, for example, is a 21x21 submatrix
containing the top 40 relations, which corresponds
to the 40 item sublist in Table 1.

Of all the possible submatrices extracted from R-
matrix, only the 50x50 matrix of probe terms, or
submatrices of it, have two different relational
metric values between every pair of terms. That is,
they have one value for probe term Y in the context
of probe term X, and a different value for probe term
X in the context of probe term Y. All of the other
relations in submatrices of the R-matrix are
unidirectional, that is, there is a single relational
metric value for term-in-context Y in the context of
probe term X.

The second alternative form of the results is the
network. The analyzed text can be represented by a
network containing 621,732 non-reflexive relations
among 789 nodes. The R-list and R-matrix
implicitly describe a subnetwork containing 9075
arcs and 789 nodes. This shall be called the R-
network. Each arc has a non-zero relational metric
value, and each node has a weight, its frequency of
occurrence in the body of the text. The more heavily
weighted nodes and arcs represent the more
important parts of the network. It follows that
simpler subnetworks can be derived from the R-
network which still retain the most heavily
weighted nodes and arcs, and thus could retain the
important characteristics of the domain. These
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subnetworks correspond to sublists of the 9075-
record R-list, and submatrices of the 50x789 R-
matrix.

Network Models Based On The Most Prominent
Relationships In The Text

Figure 5 shows an example subnetwork which
includes the 40 relations with the highest relational
metric values out of the 9075 relations in the R-
network. This network directly corresponds to the 40
records shown in Table 1 and the association matrix
in Table 3. Note that there are 21 nodes in this
subnetwork. Within this subnetwork the top five
relations (with their relational weights shown in
parentheses) are old-> flow(314), aa-> flow(299),
young-> flow(296), pahoehoe-> flow(287), and age->
flow(271), where the first word in each pair is a
probe term, and the second is a term-in-context.
[Note: aa is a blocky form of lava and pahoehoe is a
ropey form of lava.] The weights of the nodes
included here are: flow(81), age(32), old(24), aa(19),
pahoehoe(19), and young(13). From this very limited
information, one can infer that "flow" is the most
important node, and that the nodes "young," "old,"
"aa," and "pahoehoe" are importantly related to
"flow" in this domain. A reading of the text confirms
that "flow" is the most central concept, that
determining flow age and distinguishing young from
old flows is the main theme, and that differentiating
the two kinds of flow textures, aa and pahoehoe, and
determining their ages, is another of the main ideas
expressed. Thus, from even such a tiny subnetwork
as one consisting of 5 relations and 6 nodes it is
possible to tolerably well describe the reality of the
domain sampled by the text.

Similarly, the remainder of the subnet in Figure 5
captures other key notions of the text. For example, a
module centered on "data" is already beginning to
emerge, showing the close relation between TIMS
[Thermal Infrared Multispectral Scanner] and NS-001
[a multispectral scanner], which are the two sources of
data, and the "data" node. Further, to use data, as
indicated by the relation between "use_verb" and
"data," is a central action that is repeatedly expressed
in the text. The fact that the nodes "tims," "ns_oo1"
and "use_verb" all converge on "data" indicates the
centrality of "data" within this module, as well as the
subordination of the other three nodes. In addition, the
node "image" is closely associated with "data" because
images in this domain are created from "data." Also,
the characteristic of images which is most important
in this domain sample is "color." Accordingly, the
close relation between the nodes "image" and "color"
clearly captures this idea. The fact that both "image"
and "color" are directly associated with "flow" is in
harmony with the fact that the images in this domain
represent flows, and colors in these images
differentiate one flow from another. The remaining

nodes and links in Figure 5 are also consistent with
the main ideas expressed in the text.

By considering different numbers of the most heavily
weighted relations, that is, those with the highest
relational metric values, various other sublists can be
derived from the R-list, producing submatrices of the
R-matrix, and subnetworks of the R-network. For
example, using a threshold value, T, applied to the
graph in Figure 4, the top R relations can be selected.
For example, for T=75, R=164, as shown in Figure 4.
When the top R relations are selected from the R-list,
the records obtained include not only the weight of
each relation, but also the nodes involved and their
weights (see Table 1). This information can be used as
an ordered list, or they can be used as an association
matrix or a network diagram, to guide the next steps
of the object-oriented domain analysis.

To obtain a large enough network for a meaningful
test and demonstration of the method, a threshold
value of T=75 was used. The resulting network is the
one which will be fully described in order to develop a
domain model. This network, shown in Figure 6, is
based on all records in R-list having a relational
metric value greater than or equal to a threshold value
of 75. The network contains the top 164 relations in
R-list. Participating in these relations are 53 nodes.
The weights of relations and nodes are not shown in
this figure in order to avoid visual clutter, but they
can be obtained from Tables 2 and 5. In addition,
these weights are discussed in more detail below in
the context of creating the object-oriented relational
analysis report. Note that Table 1 contains the top 40
of the 164 relations and 21 of the 53 nodes in Figure
6. Further, the network in Figure 5 is a subnet of the
one in Figure 6, and it, too, contains 40 of the 164
relations and 21 of the 53 nodes in Figure 6.

Even without considering the weights of relations and
nodes in Figure 6, it is evident that "flow" is the
central node of the domain, judging by the number of
relations in which "flow" participates. It is also
evident that the next most important nodes are
"image" and "data." Without counting the number of
relations, their weights, or the node weights, the
nodes "age," "color," "old," "reflectance,"
"component," and "green" all seem to be important at
a level just below that of "data." Specific attention is
given to the weights and numbers of relations in the
section below on generating detailed descriptions of
the nodes and their relationships. For now it is
sufficient to note that the subnetwork in Figure 6 adds
nodes and relations not contained in the smaller
subnetwork in Figure 5, and that those details
correspond well to those obtained in reading the text.
For example, the action "combine" is associated with
"data" since the domain text describes the combination
of NS-001 data and TIMS data.



11

The description of the nodes and relations in the
network model of the domain (Figure 6) is provided
in the object-oriented relational analysis report shown
in the Appendix. Given the network in Figure 6, the
first step in generating this report is to calculate new
node weights based on relatedness, as shown in
Table 4. Next, a list of the 164 most highly related
node pairs is exported as plain text from the R-list
database, and the metric values are normalized
(divided by the observed maximum), as shown in
Table 5. Using this list as a guide, each node is
defined, and the relationship between each node pair
is described. It is helpful to consult domain
glossaries for definitions of terms. To obtain
descriptions of the relationships, the analyst reviews
the original text. Figure 7 shows a screen image of
the concordance/KWIC index as it appears while
being used to search the original text for the node
term, "flow." The window at the bottom shows some
of the contexts around the term "flow" (the rest are
available by scrolling) while the window at the top
contains the full text context for any line selected in
the bottom window.  (In practice, the windows are
made much larger on the computer screen, so as to
display more of the contexts.) By using the pattern
matching capabilities in the concordance program
(Thomson 1992), the contexts shown for "flow" or
any other word can be limited to just those
containing the second word in a node pair. For a
small body of text, it is just as easy to print out all
of the contexts of "flow" (or any other node) and to
circle the occurrences of the second item in the node
pair. A description of the relationship is then
obtained by reading the contexts of the co-
occurrences. The concordance/KWIC index aids the
analyst during the process of describing the
relationship between each pair of nodes in Figure 6,
which are explicitly listed in Table 5. The
descriptions are shown in the Appendix.

A simplified, object-oriented network model of the
domain can be derived from the network in Figure 6
and the descriptions and weights in the object-
oriented relational analysis report (Appendix). This
network, shown in Figure 8, shows only objects and
inter-object relations. Table 6 shows all 164
relationships of Figure 6 mapped to object
relationships. That is, if one of the participants in a
relationship is an attribute, attribute value, or action,
rather than an object, its label is expanded to indicate
the name of the object to which it belongs. For
example, since "age" is an attribute of the object
"flow," the label for "age" becomes "flow(age)."
Similarly, since the attribute value "old" refers to the
attribute (relative) "age," which belongs to the object
"flow," the label of "old" becomes "flow(old)." When
a relationship is between two nodes which refer to
the same object, the relationship represents internal
structure of the object, that is, an intra-object

relationship. For example, the relationship between
"flow(age)" and "flow(old)" is one which is internal
to the object "flow." Otherwise, the relationship
represents an external, inter-object relationship. For
example, the relationship between "flow" and
"image" and that between "flow(age)" and
"image(color)" are both external, inter-object
relationships. All relations between an object and its
internals (attributes, attribute values, and actions) are
summed, and the sum is used as a measure of the
object's internal complexity. In addition, once all
entities are identified as objects or assigned to
objects, all relations between any two objects are
summed and treated as a measure of overall inter-
object relatedness.  For example, the one relationship
between "flow" and "band" is that between
"flow(age)" and "band," whose relational metric value
is 0.25, so that is taken as the value of the relation
between "flow" and "band." To simplify the network
even further, only one weight is shown for arcs
representing either mutual or one-way relations.
Thus, each relational weight in Figure 8 is the sum
of the individual relational weights in either
direction.

This object-oriented network model of the domain
(Figure 8) is a companion to the detailed information
in the Appendix. It shows that "flow" is the most
complex (i.e., elaborated) object in the domain, with
the object "image" only elaborated about 37% as
much. The object "data" is only 14% as complex as
"flow." The relation between "flow" and "image" is
by far the dominant one, with the next most
important relation, between "image" and
"component," being only 29% as important. In the
context of "flow," the most importantly related
objects, after "image," are "data," "aa," "pahoehoe,"
and "group." In the context of "image," the most
importantly related objects, after "flow," are
"component," "data," and "group." Another feature is
that "image" is closely associated with a module
consisting of "component," "band," and "reflectance."
Further, "data" seems to form a module with "tims"
and "ns_oo1." This network can serve as a summary
framework of the detailed descriptions in the
Appendix. Figure 6 shows both the intra-object and
the inter-object relations.

Comparison Of Result Network With Pathfinder
Networks

The network domain model shown in Figure 6,
which serves as the basis for the object-oriented
relational analysis report (Appendix), could have
been constructed by alternate means. Pathfinder
networks can also be derived from the relational
metric values in R-list. Three were created in order to
compare them with the network domain model in
Figure 6, which is based on the top 164 relations.
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The key equations and parameters for creation of
Pathfinder networks are described by Schvaneveldt,
Durso, and Dearholt (1989). The essential idea is to
minimize the "path length" (which may include
multiple arcs) between nodes. The maximum number
of links in a path is set by a parameter, q. A second
parameter, r, determines how relational weights
contribute to the path length. The minimal
Pathfinder network has an r value of infinity and a q
value of n-1, where n is the number of nodes in the
network. One problem with large values of r is that
as r increases, the proximity of nodes is determined
by the weaker associations between the nodes, thus
reducing the influence of the most important
relations. A problem with any values of q larger than
1 is that as q increases, increasingly indirect (multi-
link) relations take precedence over direct relations.
As r or q decrease, the number of links increases.
When q=r=1, every association in the input matrix
appears as a relation in the output network. Thus,
one must choose between an emphasis on less
important or indirect associations and too many links
in the output network. The minimal Pathfinder
network (q=n-1, r=infinity) is the most readable
choice, and while it drops important direct relations
and relies on implicit and very indirect relations, it
does provide a genuinely meaningful model of a
domain. That model is not, however, ideal for
object-oriented analysis, as discussed below.

Of the three Pathfinder networks created from data in
R-list, Figure 9a is the most directly comparable to
Figure 6. Both networks contain nodes which are
classes/objects, attributes, attribute values, and
actions, and they each have about the same number
of relations. To create the network in Figure 9a, the
parameter q was set to 99 and the parameter r was set
to infinity, so this is a minimal Pathfinder network
having 155 relations among 100 nodes. It is derived
from the 3020 non-zero-weighted relations among the
100 most interconnected nodes in R-list. Figure 9a
has 9 fewer relations but 47 more nodes than Figure
6. In cases where Figure 9a has the same relations as
Figure 6, the relational weights are identical. Both
networks contain the top 24 relations, for example.
Because there are so many more nodes in this
Pathfinder network, it represents more detail about
the contents of the domain. To bring in so many
additional nodes while keeping the number of
relations down, the Pathfinder algorithm deleted
many of the more important relations, which were
considered to be redundant. Thus, for example, the
important relation between "image" and "data" is
deleted because a more heavily weighted multi-link
path can be traced via "flow." Still, the sparse and
readable network in Figure 9a contains an additional
47 nodes beyond that in Figure 6, providing
additional domain information. Further, the
Pathfinder network contains reasonable semantic

associations, attesting to the semantic coherence of
that data and the utility of the method.

The strategy of deleting important links because they
are "redundant" with multi-link paths is the quality
of Pathfinder networks which makes them
undesirable for object-oriented analysis. In OOA, the
analyst must identify collaborating classes/objects
and internal class/object structure. If such important
relationships as that between "data" and "image" are
not made explicit in a network domain model, then
the analyst will fail to appreciate those relationships.
Another negative aspect of Pathfinder networks for
object-oriented relational analysis is that as important
relations are omitted, less important ones are
retained. With Pathfinder networks, the only way to
retain all of the important relations and none of the
indirect ones is to settle for a dense network
containing all of the many associations in the input
matrix.

Pathfinder networks, while not ideal for object-
oriented relational analysis, are still useful for
reducing data in large association matrices to sparse
and readable network representations. The many
studies based on the Pathfinder method (see
Introduction) attest to its usefulness in modeling
domains. Thus, while networks based on a small
percentage of the top relations, such as Figure 6, are
more directly applicable as the basis for object-
oriented modeling of the most prominent relational
structure of a domain, the Pathfinder networks
provide useful supplementary information.

The Pathfinder network in Figure 10a provides an
additional example. It is one which is constrained to
include only the 50 probe terms. The network is
based on a Pathfinder analysis of the 1756 non-zero-
weighted relations among the 50 probe terms
contained among the 9075 relations in R-list. The
algorithm used a q value of 49 and an r value of
infinity, producing a network linked by a minimal
set of 102 relations. This network domain model
provides a useful supplementary view of the domain,
as represented by its 50 most important nodes. These
nodes are linked by a nearly minimal spanning set of
relations. A similar supplementary view can be
made, based on the top relations among probe terms,
but one with the top 102 relations includes only 34
of the probe terms. To include all 50 probe terms in
the top relations, a minimum of the top 495 relations
would be required. Clearly, the Pathfinder network
provides a much more readable network for a
supplementary view containing all of the probe
terms.

The Pathfinder network in Figure 11a contains the 30
most important classes/objects in the domain and the
70 which are most closely associated with them. No
attributes, attribute values, or actions are included.
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(The notion of class/object was liberally interpreted
for this network. Color is included, for example,
because it could be considered to be a class/object by
virtue of having a potentially complex internal
structure and being widely reusable.) The q and r
values used by the Pathfinder algorithm were 99 and
infinity, respectively. This reduced the 1454 non-
zero-weighted relations among these 100
classes/objects to a minimal Pathfinder network
containing 137 relations among the 100 nodes. This
network usefully supplements the domain
information contained in Figures 6, 9a, and 10a. To
do so, it uses many relations whose metric values are
among the lowest, but it produces a highly readable,
semantically interpretable network domain model
which efficiently interconnects all 100 nodes.

The chief contribution of Pathfinder networks to
object-oriented relational analysis is that they provide
sparse and readable supplementary views of the
semantics of the domain. The three Pathfinder
networks produced from data in R-list (Figures 9a,
10a, and 11a) clearly demonstrate a flexibility of
viewpoint that is unavailable when merely using the
top R relations among N nodes. On the other hand, the
method of using the top relations sacrifices none of the
important relations to network efficiencies or
alternative views of the domain. Thus, the two
methods play complementary roles when applied to
proximity-weighted co-occurrence data. Differences
between the two approaches in terms of the numbers of
nodes and relations have already been discussed above.
Differences in their relational values are shown in
Figures 9b, 10b, and 11b. Figure 9b compares the
relational metric values of the relations used in Figures
6 and 9a. Figures 10b and 11b compare the relational
metric values of relations used in Figures 10a and 11a
with comparable networks having the same numbers of
top relations. Figures 9b, 10b, and 11b show that the
Pathfinder networks contain relations having lower
relational metric values (but have more nodes per
relation) than comparable networks containing only the
top relations. While it is true that the Pathfinder
networks in Figures 9a, 10a, and 11a do contain the
top 24, 24, and 14 relations respectively, they omit
many of the next most important relations. Thus,
while Pathfinder networks are useful they must be
interpreted with care.

The threshold method for selecting the top relations
is effective and the Pathfinder network reduction
method is not required because of the distribution of
the relational metric values. These weights, produced
by the proximity-weighted co-occurrence method,
have a large dynamic range, a small number of high
values, and a rapid fall-off from the highest values.
This enables the effective application of a threshold
to select the most salient relations by selecting the
few having the highest relational weights. This

reduces the complexity of the final network while
retaining the top relations, providing a framework for
description of the domain. Pathfinder network
reduction is more appropriate for reducing association
matrices having cell values that are more uniformly
distributed, as is common with paired-comparison
data. Figure 12 illustrates the difference between the
relational weights in a typical association matrix
based on paired-comparison judgments (from
Schvaneveldt, Durso, and Dearholt 1989) (the upper
graph) and the highest 700 of 9075 relational metric
values computed from the analyzed text according to
the proximity-weighted co-occurrence method
developed in this paper (the lower graph). The large
dynamic range, small number of high values, and
rapid fall-off from the highest values distinguishes
the relational metric data from the paired-comparison
data. The Pathfinder method is only necessary for
analyzing relatedness values which are not strongly
differentiated. This includes all of the paired
comparison data in the upper graph of Figure 12, and
those relations in the lower graph which have
relational metric values below a threshold of around
75, that is, for relations beyond the top 164 relations
which produced Figures 6 and 8, and the object-
oriented relational analysis in the Appendix.

Discussion

A key innovation introduced in this paper is an
automated method of calculating a relational metric,
based on proximity-weighted frequencies of co-
occurrence among terms in domain text, and the use
of that metric to characterize the relational structure
of the analyzed domain. Another innovation is the
generation of link-weighted networks based on the
relational metric values derived from verbal data,
whereas other researchers have derived such networks
from paired comparisons, sorting tasks, or sequential
activities such as typing commands or pushing
buttons (see Introduction). A third innovation is the
processing of verbal data in such a way as to generate
an object-oriented domain model for the purpose of
implementing software. This most directly builds on
the ideas of Abbott (1983), but improves the method
by processing domain-produced verbal data, and by
objectively and quantitatively deriving weights and
rank orderings for the domain terms and the relations
among them. This use of domain-produced data to
generate a domain model is the fourth innovation
introduced in this paper. A fifth innovation is the
quantitative method of network reduction based on
object-oriented principles, as when the network
domain model in Figure 6 is reduced to class/object
relations in Figure 8, by applying the information in
the object-oriented analysis report (Appendix) and the
relational metric values in Table 6. This method
provides some of the "information hiding" needed for
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representations of complex domains, and it could be
extended to reduce the class/object network to a
network of modules.

Efficacy and repeatability of the method

For the method of domain analysis presented in this
paper to be useful, the resulting model must represent
the prominent structural characteristics of the domain,
as contained in the analyzed text, in an explicit,
objective, and quantified form that is stable and
reproducible. The efficacy and repeatability of the
method are discussed below, as appropriate, for the key
components of the method: coding of the original text,
determination of the prominent domain entities and
selection of probe terms, determination of the relative
prominence of relations, creation of domain networks,
and description of key domain entities and relations,
including identification of domain classes/objects and
assignment of attributes, attribute values, and actions
to classes/objects.

Coding   

The degree of coding done in this study was minimal,
especially as compared with traditional content analysis
methods in which the primary task of the coder is to
assign terms to socio-political categories. In this study,
the coder differentiated nouns from verbs, and mapped
them to base forms. Where there was ambiguity of
meaning or part of speech, the coder assigned tags to
eliminate the ambiguities. The most variation of
coding in this method is likely to occur when multi-
word entities are identified. One solution is to be
conservative in the identification of multi-word
entities. At the extreme, none would be identified.
This, however, would force terms like "Mauna Loa"
into two separate but closely related nodes. At the
other extreme, any adjective could be permanently
linked with its noun, which has the effect of artificially
lowering the apparent prominence of the noun. A
reliable and effective linking of multi-word entities
would only join terms such as "Mauna Loa." Overall,
the coding done in this study was minimal and rather
mechanical, making it very repeatable. That the coding
supports the effectiveness of the method can be seen in
the fact that meanings were clarified and no spurious
meanings were introduced.

Probe terms   

Selection of probe terms (PT) is objective and
repeatable. The probe terms selected in this study
include the nouns, verbs, adjectives, adverbs, and first
person pronouns that were most frequently used in the
analyzed text. Words which were not used as probe
terms include: pronouns referring to things, non-action
and auxiliary verbs, conjunctions, prepositions,
articles, and numbers. The purpose of using the most
frequently occurring terms is to capture an objective,
overall characterization of the prominent entities in the

domain as represented in the text. It might also be
appropriate to supplement this view by using
additional sets of probe terms comprised of those
frequently occurring terms which are also focused on
particular themes, but this remains for a future study.

The effectiveness of initially using the most frequently
occurring terms as the most important terms in the
domain sample, and thus as probe terms, must be
demonstrated. One argument in favor of the
effectiveness of using frequency of occurrence as a
measure of importance is that fact that it is the most
fundamental metric used in content analysis studies,
and has been for decades (Krippendorff 1980).
Similarly, ethnographers routinely infer the importance
of domain concepts or "native terms" from their
presence, frequency, and context in verbal data
(Fetterman 1989; Jacobson 1991). Another argument in
favor of the effectiveness of using frequency of
occurrence as a measure of importance is that the
results of this study show that a small number (50) of
the most frequently occurring terms (the probe terms)
are closely related to all of the other terms in the
analyzed text. That is, every one of the 789 unique
terms appeared in the context of one or more of the 50
probe terms. The ability of 50 probe terms to span the
entire text argues in favor of accepting them as
including or being among the most important terms in
the domain text. This also indicates that 50 is a large
enough number of probe terms to span the domain
sample.

In contrast to using the most frequently occurring
terms in domain documents as probe terms, terms for
deriving Pathfinder networks from paired comparison
studies have been identified by more arbitrary means.
For example, Cooke and Schvaneveldt (1988) used 16
terms taken from chapter headings of an introductory
computer science textbook as probe terms, and
Schvaneveldt and his colleagues (1985) used 30 "basic
concepts" in air combat without elaborating on their
origin. McDonald and Schvaneveldt (1988) cite a
sequential adjacency study whose probe terms were 49
Unix commands used by at least 5 of 9 experienced
Unix users.

The issue of how many probe terms should be used for
analysis of a body of text needs further investigation.
In this study, the use of 50 probe terms was suggested
by the distribution of frequencies of occurrence of the
unique words in the analyzed text. The distribution of
candidate probe terms (that is, words other than
articles, prepositions, and other such words) is shown
in Figure 13. The most frequently occurring words are
relatively few in number and appear much more
frequently than the others, so these were used as probe
terms. The cut-off point was chosen to be the middle
of the "knee" of the curve. At this point, the frequency
of the lowest ranking probe term, "visible," is only 8,
which is less than 10% of the frequency of the most
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important probe term, "flow," which occurs 81 times.
These criteria are somewhat arbitrary, however, and the
issue remains as to where to draw the line between
probe terms and non-probe terms, and the effect of that
decision.

Several constraints may influence the decision,
including the need to have a sufficient number of
probe terms to adequately model the domain, the
cost of processing probe terms, and the need to limit
the number of paired comparisons to be made in a
parallel experiment. If it takes 5 seconds to make a
relational judgment between a pair of terms
(McDonald and Schvaneveldt 1988), then 50 probe
terms compared with 789 terms-in-context (which
include the 50 probe terms) would require
(50*49/2)+50*739=38,175 judgments taking 53.02
hours. If the comparisons were limited to paired
comparisons of probe terms, it would require
50*49/2=1225 judgments taking 1 hour and 42
minutes. Paired comparisons among 60 probe terms
jumps to 2 hours and 28 minutes, and 70 probe
terms would require 3 hours and 22 minutes. The
cost of processing probe terms has already decreased
significantly by improvements to the software, but
the still-significant cost of processing additional
probe terms must be weighed against the benefit. The
key benefit is the quality of the domain model
produced by a given number of probe terms. A
method to obtain a quantitative measure of this
might be to find the relationship between the
magnitudes of the relational metric values of the top
relations, and the number of probe terms required to
obtain these top relations.  When inclusion of
additional (less frequently occurring) probe terms
provides no additional important relations, this
would indicate that a sufficient number of probe
terms had obtained a model of the desired
complexity. This method is being developed and
applied in a subsequent study.

Relational metric   

The proximity-weighted co-occurrence method of
determining the relative importance of domain
relations is stable, objective, quantified, and
reproducible. The sliding window calculation of the
relational metric is conceptually simple and it
captures both the frequency of co-occurrence among
terms within multiple contexts of selectable size and
also their proximities within each context. The
method is also reasonable. It works in a way that is
analogous to the way a human reader might evaluate
relatedness among important words in a text. In fact,
the method was designed to automate and objectify a
process applied in a previous study to derivation of a
domain model from an interview transcript
(McGreevy 1994). In that study, the important words
were determined by frequency counts, just as in this
study. These words were then highlighted in the text

and the text was reviewed to evaluate the
relationships among words. Words found in the
context of a highlighted term seemed to be
reasonably related to it, and those frequently
occurring closer to it seemed to be more closely
related. The size of a meaningful context varied, but
often appeared to range from the sentence before to
the sentence after a word. A sliding window that is
one sentence wide captures a similar context. Thus,
the relational metric method of this paper can be
considered to be operationally effective because it
automates and objectifies a process that one can
usefully apply manually.

As a quantitative basis of relational networks,
application of the proximity-weighted co-occurrence
metric to domain text has some advantages over
paired comparisons and sorting tasks . The metric is
more contextualized and specific because the
associative contexts in which individual relational
weights are established occur during thoughtful
exposition of ideas in the creation of the text.
Further, the relational metric method finds multiple
instances of relatedness between terms in the text,
where each instance can have a different context and a
different degree of relatedness, and the final relational
metric value takes all of these instances into account.
Thus, the relational metric is more contextualized
and specific than a single judgment concerning the
overall degree of relatedness between isolated words.

As noted in the method section, the sliding window
method of calculating the relational metric values can
produce asymmetric results, so that the relational
metric value between terms A and B is different from
the value between B and A. The asymmetry arises
when an active probe term appears more than once
within the same context window because the method
of calculation has the effect of preventing their
contexts from fully overlapping. This is
demonstrated in the example given in Figures 2b and
2c. The asymmetry is greater for relations involving
terms which are densely distributed in the text, such
that multiple instances of the term often occur within
the context window. For example, the distance in
number of words between two instances of the word
"flow" is less than 22 (the size of the context
window) a total of 47 times within the analyzed text.
As a result, the method of calculation produces a
relational metric value for R(flow,old) which is 23%
smaller than the value for R(old,flow). In general,
relations in which "flow" is the probe term have
lower values than relations in which "flow" is a term-
in-context. In the worst case, the value for
R(flow,young) is 38% smaller than the value for
R(young,flow). Among the top 164 relations, the
median difference between the relational metric value
of R(flow,X) and that of R(X,flow), when calculated
using the asymmetric method, is 17%.
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The density of other words in the text is much lower
than that of "flow" so the asymmetry is greatly
reduced for relational metric values involving these
terms. The next most densely occurring word (after
"flow") is "component." Instances of that word are
separated by less than 22 words (the window size)
only 15 times, compared with 47 times for "flow."
The relational metric values for R(component,X) are
not systematically larger or smaller than those for
R(X,component), for any word X, and the values
differ by an average of 6%. Other probe terms besides
"flow" and "component" occur with much less
density, and the relational metric values between each
of them and other terms typically differ by only a
few percent. Further, the relational metric values for
R(A,B) and R(B,A), for all words A and B which are
mutually related, are highly correlated (r=0.96). It is
also important to note that while the asymmetry
decreases the weight of one of the two relations
between two nodes, it has no effect on the other.
That is, while the value of R(A,B) is decreased to
some extent, the value of R(B,A) remains
uninfluenced and still represents the maximum
degree of relatedness between the two nodes. Thus,
while avoidance of overlapping contexts does indeed
introduce some asymmetries, they are limited and the
results produced do effectively represent proximity-
weighted co-occurrence relationships.

While the method produces effective results, a
symmetrical version of the method of calculating the
relational metric values would eliminate the differences
in mutual relational metric values between pairs of
words. These differences are introduced by the relative
density of probe terms and the fact that contexts of
closely neighboring instances of the same probe term
are not allowed to fully overlap. Since these differences
might not represent useful or meaningful domain
information, their elimination could improve the
effectiveness of the results. It would also simplify the
networks by eliminating the directionality of relations
and reducing the amount of data to be processed. A
symmetrical version of the method has now been
implemented for future application. Unlike the
asymmetric method, it allows the contexts of
neighboring instances of the same probe term to
overlap, so that R(A,B)=R(B,A), as illustrated in
Figures 14a and 14b.

Comparison of the network models obtained with the
asymmetrical method (Figure 6) and the symmetrical
version of the method (Figure 14c) indicate that the
networks obtained barely differ with respect to which
nodes and relationships are included in the domain
model. What differences exist are minor and peripheral.
For example, typical differences between Figure 14c
and Figure 6 are that Figure 14c adds a link of low
weight (0.27) between the word "group" and the
number "1.5" while it omits the node "brown," whose

node weight is low (0.034) and whose largest link
weight is 0.26 (see Appendix). These slight differences
do not significantly change the character of the domain
representation because the most prominent nodes and
relations are unchanged. In addition, the top 164
relational metric values computed by the asymmetric
method and those computed by the symmetrical
version of the method are correlated (r=0.89). As a
consequence, the essential features of the model of the
domain remain virtually unchanged. While the
symmetric version of the method differs slightly from
the asymmetric method and will henceforth be preferred
to it for the sake of simplicity, the latter method does
indeed produce effective results which are consistent
with results obtained using the new method.

The decision to use a context window size equal to the
average sentence length was an attempt to define a
standard, linguistically reasonable verbal context
around each probe term in the analyzed text. The effect
of varying the context window size on the relational
metric values and on the resulting domain model is an
area in need of further investigation. While some
preliminary work has been done on this, the early
versions of the software that were used to conduct this
study made the task extremely arduous. More efficient
versions of the software for computing the relational
metric values have just been developed, and these will
enable further investigation. From the work done so
far, however, it is clear that a very small window size
emphasizes lexical co-occurrences such as the relation
between "data" and "set," and adjective-noun pairs,
such as "historic flow." At the same time, small
context windows de-emphasize conceptual co-
occurrences, such as the relations between "flow" and
"age," "flow" and "image," and "flow" and "data." It
also appears that as the context window size increases,
the lexical relations remain at relatively low metric
values, while the globally important relations rise
rapidly in magnitude. It also appears that the rate of
increase in the metric value of a relation, as context
window size increases, is a function of the global
importance of the relation. More work must be done in
this area, not only for a thorough sensitivity analysis
of the context window size, but also because it may
lead to new and useful (but computationally costly)
ways to rank the important relations in the domain.

An alternative to using a context window that reaches
from one average sentence length before an occurrence
of a probe term to one average sentence length after it,
is to use the particular sentence in which each probe
term occurs as the context for each occurrence. As an
additional alternative, one could use the sentence
containing the occurrence of the probe term, as well as
the sentence preceding and the one following, as the
context. It would be valuable, in a future study, to
compute the relational metric values using these
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alternative contexts, and to compare the results with
those obtained using the fixed-size context window.

One question about the relational metric which must be
considered in more detail is the degree to which the
frequency of occurrence of each node in a pair of related
nodes influences the relational metric value between
them. If the text were random, or if it included such a
diverse collection of themes that it had no thematic
coherence, then a strong correlation between the
product occ(X)*occ(Y) and the relational metric co-
occ(X,Y) would indicate that the relatedness was likely
due to chance (Church, Gale, Hanks, and Hindle 1991).
Since the analyzed text is thematically coherent, the
product of the frequencies of occurrence of words X and
Y, occ(X)*occ(Y), is not a reasonable estimate of
chance co-occurrence. Instead, the fact that the authors
of the text refer to word X very frequently and also to
word Y very frequently would suggest that these are
important words within the theme, and that the words
are in fact likely to be closely related semantically, that
is, related by the coherence of the theme of the text. If,
however, the relational metric were highly correlated
with the product of frequencies of occurrence, it would
suggest that the metric provides little if any relatedness
information beyond that indicated by the frequencies of
the individual words.

Figures 15 and 16 indicate that the relational metric
captures relatedness between pairs of words that is
largely independent of the frequencies of the individual
words, especially for those pairs having higher
relational metric values. Figure 15 shows the
correlation between the product of normalized (i.e.,
each value divided by the maximum value) frequencies
of occurrence and the normalized relational metric for
the top 164 relationships used to produce the object-
oriented analysis in this paper, as well as the
correlation for all 9075 relationships in R-list (all those
with non-zero relational metric values). The
correlations are weak, as indicated by the correlation
coefficient values of 0.577 and 0.678 respectively.
Further, squaring these values indicates that the
percentage of the variance of the relational metric
values that is due to the product of the frequencies of
occurrence is 33.2% for the top 164 relations and
46.0% for all 9075 relations. These numbers suggest
that there might be a relationship between the number
of top relations considered and the influence of the
frequency-product on the variance of the relational
metric. Figure 16 confirms that there is a relationship,
and shows how that influence varies. These graphs
show that the variance of the relational metric, co-
occ(X,Y), is increasingly independent of the product of
the frequencies of occurrence of the related nodes,
occ(X)*occ(Y), as the number of less important
relations decreases. (Less important relations are those
with lower relational metric values and therefore less
prominence, so their rank order or "relation number" is

higher). Figure 15 clearly shows this graphically. As
dots representing less important relations are erased
from the bottom of the figure, the value of r shrinks.
Comparing Figure 16 with Figure 4 shows that the
relations with the highest metric values are those least
influenced by the frequency-product of the related
nodes. Thus, the relational metric captures a largely
independent aspect of relatedness, especially for the
higher relational metric values.

Domain model   

The effectiveness of the domain analysis method, based
on the proximity-weighted co-occurrence metric, is
indicated by evidence that the method captures the
essence of the domain structure, to the extent that it is
contained in the analyzed text, in an explicit, object-
oriented model of the domain. Review of the top
relationships identified by the method, and reading of
the domain text to which the method was applied,
indicates that the few relationships having the highest
relational metric values seem to be the most important
among the many possible relationships in the text. The
method assigns a relational metric value of zero to all
but 9075 of the 621,732 non-reflexive relations among
the 789 unique terms in the analyzed domain text. Of
these 9075 relations, only 1222 have relational metric
values of 25 to 314, only 378 have values of 50 to
314, only 164 have values of 75 to 314 as shown in
Figure 4. As demonstrated in the results section (See
the section "Network models based on the most
prominent relationships in the text" and Figure 5.), a
domain model containing merely the top five relations
captures the most prominent structure of the domain
text, that is to say, the five relations and the nodes
they relate capture core components of the meaning of
the analyzed text. The results section also shows that
domain models based on the top 40 or 164 relations
capture the essence of the domain model and the core
of the text's meaning in greater detail. The domain
model based on the top 164 relations is thoroughly
described in the results section and especially in the
Appendix, and it is clear that this is a detailed model
of the key components of the domain, and that it
captures in some detail the relational structure of the
meaning of the text, despite the fact that it is based on
only 164/621,732=0.0264% of the total number of
relations in the domain text. This evidence argues in
favor of the efficacy of the results, and it is consistent
with Simon's (1968) "empty world hypothesis,"
discussed in the introduction of this paper. That is,
"for a tolerable description of reality only a tiny
fraction of all possible interactions needs to be taken
into account" (pg. 221).

Additional evidence in support of the efficacy of the
method is provided by the Pathfinder networks derived
from R-list, Figures 9-11. As discussed above, while
the Pathfinder networks are not ideal for object-oriented
analysis, they do capture a genuinely meaningful
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network representation of the data in association
matrices. Based on the relational metric data, the three
different Pathfinder networks contain reasonable
semantic associations which are in fact contained in the
domain text. This attests to the semantic coherence of
the relational metric values and the effectiveness of the
relational metric method introduced in this paper.

The step of describing the key domain entities and
relationships is one which requires judgment, and is
therefore less objective and repeatable than the
automated steps of the method. This step includes
identification of domain classes/objects, and
assignment of attributes, attribute values, and actions
to classes/objects. Use of the object-oriented paradigm
does, however, ensure that the structure into which the
domain is fitted is one that is widely accepted as
appropriate for mapping domains of human endeavor to
explicit models and then to software. The internal
structures of classes/objects are well defined, and
constrained to include a small set of components,
including: attributes, attribute values, and actions.
Some practitioners might add more components to the
structure of objects, but few would eliminate attributes,
attribute values, or actions. Thus, the essential form of
the domain model is already widely accepted.

Because the method produces a short, prioritized list of
the most prominent entities and relationships, the
judgment of the analyst in describing the prominent
objects, attributes, actions, and relations is tightly
focused. Entities are described by the analyst in order
of importance (as determined by their relatedness to
other entities), and this order is the same for every
analyst. In addition, relationships are also described in
a prioritized order used by every analyst. Given that the
importance metrics, and thus the orders of entities and
relationships, are completely objective and independent
of the analyst, the process of describing the entities and
relations is well structured. Further, in describing each
relationship, only one pair of entities is considered at a
time, which focuses the attention of the analyst.

The utility and appropriateness of the contents of the
particular descriptions is supported by the
correspondence of the descriptions to a reading
understanding of the material contained in the source
domain document, as described in the results section.
Since the source text describes what is important to
the authors in a part of their domain, the diagram and
metrics derived from that text according to the
relational metric method represent explicit,
quantitative, and objective information about that
part of the domain. While it would be easy to read
the short source text used in this study to obtain a
similar view of the domain, the result of mere
reading would not be explicit, objective, or
quantitative. Further, the analytical method can more
easily scale up to rapidly and effectively process and

model the contents of many documents, and larger
bodies of text. By providing the description of the
entities and relationships (see the Appendix) and the
additional transformation of networks such as Figure
6 to a more clearly object-oriented network of Figure
8, the method provides software designers with
domain models that can map directly into object-
oriented designs. A mere reading knowledge of any
number of texts, without producing explicit,
objective, and quantitative models, would not
provide the same benefit.

Further evaluation of the method

Application of the method to a variety of domains
would help to test its effectiveness. Currently, for
example, work is underway to apply the method to
incident reports in an aeronautical database.
Application to multiple domains should show
whether the method captures the various structural
features of the domains, and the similarities and
differences among the domains that are evident by
other means or observations. For example, when the
method is applied to domains in which presence in
natural environments is particularly important, those
relations which are important in presence should be
prominent. That is, relations of physical adjacency
should dominate, so topological relations among
environmental classes/objects will likely have high
relational metric values, as will relations between
objects in the environment and the explorer. In
addition, the associations of attributes, attribute
values, and actions with prominent physical entities
should be among the prominent relations. Further,
representations (e.g. images, data) should be much
less prominent than environmental entities. For
example, an interview of field geologists was
analyzed in a previous study (McGreevy 1994)
without benefit of the current method of deriving
relational metrics. To further test the method, it
could be applied to a transcript of the interview and
the results could be compared with those obtained
previously. Similarly, prominent relations in
domains such as Earth Observing System studies,
where relations of physical presence are much less
salient, should be quite different in character.
Prominent relations in EOS are likely to be internal
to the environmental, representational, and data
classes/objects, between representational and data
objects, and between those and environmental
classes/objects.

Whether the relational metric method is effective for
deriving domain models from large bodies of text
remains to be determined. As the size of the analyzed
text increases, not only are logistical challenges
multiplied, but the structure of the contained domain
model might become incoherent or unwieldy. The
coding of text, in particular, involves considerable
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overhead when the number of unique words in the
text is large. A comparison of domain models
derived from coded and uncoded texts would help to
indicate the specific contribution of coding to the
final product. It may be that for some purposes,
differentiating the noun form of a word like "flow"
from the verb form, or the rock form from the molten
form, is too costly. A related problem is the
derivation of models from a large collection of small
texts. Is it possible to derive a meaningful core of
commonality, or would the multiple topics lead to a
patchwork domain model? These issues remain to be
addressed.

If the method is used to prepare for interviewing
domain experts and/or field observations of their
work, further evaluation of the method could be
obtained by using key findings from analysis of
domain text to develop hypotheses, and then testing
them in interview questions or field observations.
The results of the current study, as represented by the
network of 164 relations among 53 nodes in Figure 6
and described in the Appendix, provide a rich
collection of material that could be used in
preparation for field interviews of Abrams and his
colleagues (the authors of the analyzed text), and for
on-site observations of their domain activities. For
more comprehensive preparation, it would be
valuable to analyze a broader selection of domain
material which is still focused on a coherent group of
investigators. The EOS Interdisciplinary Studies
volcanology group is one example of an appropriate
scope for further object-oriented relational analysis.
Material made available by the group on Internet via
World Wide Web (at http://www.geo.mtu.edu/eos/)
provides exactly the kind of information needed to
conduct such an analysis.

If the method described in this paper is used at a later
stage of domain analysis and testbed design, such as
to analyze field interviews in preparation for the
design and development of a domain-oriented
testbed, further evaluation of the domain model
could be achieved. First, the analyses would be
provided to software implementers in order to gauge
their contribution to design and implementation.
Further, as the implementation evolves, domain
experts would exercise early prototypes of the
testbed. If the implemented system meets the needs
of the domain experts, this would support the
argument that the method of object-oriented
relational analysis is indeed effective, that is, that it
captures the essential elements of their domain model
in a form that is useful for implementation of
domain-oriented software.

Domain models are models of presence

The entities and relations identified as being
prominent in a domain are the ones used to construct

a model of the domain. Thus, the entities and
relations with which the domain expert is
persistently engaged in the domain itself are those
which comprise the domain model.  This suggests
that every domain model is a model of presence.
That is, the immersion of a domain expert in a
domain is a persistent engagement, governed by the
dictates of the domain, with entities which are related
by logical and physical adjacencies or continuities
(McGreevy 1992). These relations are also called
metonymic relations (McGreevy 1994). The nature
and character of the domain determine which entities
and which adjacencies are important. The proportion
and distribution of the strictly logical adjacencies
relative to physical adjacencies vary from domain to
domain. In every domain, the domain expert is
logically present. That is, the entities of interest are
logically related, the expert is persistently engaged
with these entities, and transitions among them
traverse logical adjacency relations. To the extent that
the persistently engaged domain entities are also
physically adjacent to one another, the domain expert
is also attendant to relations which are fundamental
to physical presence among the domain entities. In
this case, attentional shifts among the prominent
entities will tend to traverse physical adjacency
relations, while attentional shifts among entities
which are only logically related will tend to traverse
topical, categorical, definitional, or other relations
which are discontinuous or disparate physically, but
are part of the connected logical fabric or logical
topology of the domain.

In the EOS domain analyzed in this paper, strictly
logical presence dominates. The network domain
model shown in Figures 6 and 8 and the object-
oriented relational analysis report in the Appendix are
based upon the entities and relationships with which
the EOS experts are persistently engaged. The node
weights represent the degree of engagement with each
node, and the relational weights represent the degree of
engagement with each relationship. The most persistent
engagement is with those nodes and relationships
having the largest weights. Thus, the part of the EOS
domain represented in the analyzed text is one in which
domain experts are persistently engaged with a number
of concepts, as indicated by the networks in Figures 6
and 8 and the relational metric values in Table 6. The
most important of these concepts include, in order of
importance: age-related attributes of volcanic lava flows
[R(flow,flow) = 14.02], the relationships of these
volcanic lava flows with the colors in laboratory
images [R(flow,image) = 8.83], the relationships
among colors in these images [R(image,image) =
5.20], and the relationships of these images with
principal components, a combination of reflectance data
which are assigned to the colors red, green, or blue to
produce false color images of lava flows
[R(image,component) = 2.58]. As such, it is a domain
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dominated by strictly logical adjacencies among
entities which are not physically adjacent. (The
physical adjacency of colors in the images do not
constitute domain-defining interobject relations.) While
these conceptual emphases of the small source text can
be readily understood by reading it, the fact that they
are also explicitly quantified in the domain model
based on the relational metric method lends credence to
the method.

The notion that such domain models can be analyzed
as models of presence is supported by the ability of
the domain model to explicitly, objectively, and
quantitatively represent the conceptual emphases with
which the authors of the source text were persistently
engaged. That is, object-oriented domain models can
represent presence because they model persistent
engagement. More evidence for this would be
provided by domain models of field geology and
planetary surface exploration, including Apollo
mission lunar surface exploration and robotic rover
missions. Models of these domains, objectively and
quantitatively derived using the relational metric
method, should indicate a measurably greater degree
of persistent engagement among physically adjacent
entities, which would indicate the greater role of
physical presence in these domains. Such models
could be used to improve the designs of virtual
environment systems for planetary exploration, and
aid in a theoretical understanding of presence. In
general, the relational metric method of domain
analysis that is introduced here has the potential to
produce useful domain models to guide the designs
of a variety of computer-based systems, and
contribute to a better understanding of the analyzed
domains.

Conclusion

This paper describes a relational metric method of
verbal data analysis which produces object-oriented
domain models that are explicit, objective, and
quantified. The method produces models of the
relational structure of domains, as represented in
domain-produced verbal data, by computational
means. Relational metric values are based on
proximity-weighted frequencies of co-occurrence
between a small number of probe terms and the terms
in their contexts. Object-oriented relational analysis
of the resulting domain structure produces a model of
the domain in a form that is useful for software
implementers. Models from related or very different
domains can be compared and contrasted, providing
the ability to observe structural similarities and
differences. This can lead to a better understanding of
the domains themselves, and to more effective and
less expensive domain systems. One important use
of

the relational metric method of domain analysis is to
investigate the role of logical and physical presence
in a variety of domains, which can support
development of a theory of presence, and improve the
design of virtual environment systems.
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of each probe term
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Figure 1.  Overview of a domain modeling process based on object-oriented verbal data analysis.
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<- - - - - - - - - - context of PT - - - - - - - - - - ->
w1      w2      w3      w4      w5      w6      P T      w7      w8      w9      w10      w11      w12   

a 0 0 0 0 0 0 0
b 0 1 1 1 1 1 1 0
c 0 1 1 1 1 1 1 0
d 0 1 1 1 1 1 1 0
e 0 1 1 1 1 1 1 0
f 0 1 1 1 1 1 1 0
g 0 1 1 1 1 1 1 0
h 0 0 0 0 0 0 0

    __________________________________________________________
0 1 2 3 4 5 - 5 4 3 2 1 0

Figure 2a.  Example calculation of proximity-weighted co-occurrence relational metric values for twelve words
in the context of one occurrence of one active probe term (PT).  See text for explanation.

<- - - - - - - - - - context of PT2  - - - - - - - - - ->
age <wd> flow <wd> flow color

    w0      w1      w2      w3      w4      PT2      w6      pt1a      w7      pt1b      w9      w10      w11      w12      w13
a 1 1 1 1 1 1 0
b 0 1 1 1 1 1 1 0
c 0 1 1 1 1 1 1 0
d 0 1 1 1 1 1 1 0
e 0 1 1 1 1 1 1 0
f 0 1 1 1 1 1 1 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0

    ___________________________________________________________________
1 2 3 4 5 - 5    4   3    2   1 0 0 0 0

Figure 2b.  Relational metric value between two probe terms, pt1 (e.g. "flow") and PT2 (e.g "age"), in which
PT2 is the active probe term (in uppercase bold type).  The terms pt1a and pt1b are two instances of the same
probe term, pt1.  The relational metric value of pt1 in the context of PT2 is 4+2=6.  Compare this figure with
Figure 2c.

    <- - - - - - -  context of PT1a - ->
         <- -  context of PT1b - - - - - - ->

age <wd> flow <wd> flow color
w1      w2      w3      w4      pt2      w6      PT1a      w7      PT1b      w9      w10      w11      w12      w13       w14   

a 0 0 0 0 0 0 0
b 0 1 1 1 1 1 1 0
c 0 1 1 1 1 1 1 0
d 0 1 1 1 1 1 1 0
e 0 1 1 1 1 1 1 0
f 0 1 1 1 1 1 1 0
g 0 1 1 1 1 1 1 0
h 0 1 1 1 1 1 1 0
i 0 1 1 1 1 1 1 0
j 0 0 0 0 0 0 0

    ___________________________________________________________________
0 1 2 3    4   5 - 6 - 5 4 3 2 1 0

Figure 2c.  Relational metric value between two probe terms, PT1 (e.g. "flow") and pt2 (e.g. "age") , in which
PT1 is the active probe term (in uppercase bold type).  PT1a and PT1b are two instances of the same probe
term, PT1.  Note that context of an active probe term never reaches beyond an instance of the same active
probe term.  The relational metric value of pt2 in the context of PT1 is 4.  Compare this figure with Figure 2b.
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Abrams, M., Abbott, E., and Kahle, A.  (1991).  Combined use of visible, reflected infrared, and
thermal infrared images for mapping Hawaiian lava flows.     J. Geophys. Res.   ,    96   , B1, 475-484.

The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the
surfaces.  These changes have been mapped using remote sensing data from the visible and
reflected infrared and thermal infrared wavelength region.  They are related to the physical
breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of
mafic minerals, and the development of vegetation cover.  These effects show systematic behavior
with age and can be mapped using the image data and related to relative ages of pahoehoe and aa
flows.  The thermal data are sensitive to silica rind development and fine structure of the scene;
the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders.
Together, data from the two wavelength regions show more than either separately.  The combined
data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic
environments.

Figure 3.  Reference and abstract of the text that was analyzed via the proximity weighted co-occurrence
relational metric.
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Table 1.  The 40 most important relations in the domain sample, and the nodes involved in those relations.
These are the first 40 of 9075 records in R-list, the tabular results database describing the relational structure
of the domain sample.  The database is sorted in decreasing order of the relational metric, co-occ(PT,TIC).
The 40 records shown here have the 40 highest values of co-occ(PT, TIC).

PT       occ(PT)       TIC       occ(TIC    ) co-occ(PT,TIC)
   value       max-value+1

old 24 flow 81 max = 314 1
aa 19 flow 81 299 16
young 13 flow 81 296 19
pahoehoe 19 flow 81 287 28
age 32 flow 81 271 44
flow 81 old 24 241 74
flow 81 age 32 238 77
image 41 flow 81 224 91
flow 81 pahoehoe 19 222 93
color 35 flow 81 221 94
tims 21 data 44 220 95
data 44 flow 81 217 98
flow 81 aa 19 211 104
color 35 image 41 211 104
image 41 color 35 208 107
blue 18 flow 81 205 110
group 14 flow 81 194 121
blue 18 green 22 193 122
green 22 flow 81 192 123
green 22 blue 18 190 125
flow 81 data 44 186 129
flow 81 young 13 185 130
flow 81 image 41 184 131
ns_oo1 13 data 44 183 132
data 44 tims 21 181 134
flow 81 color 35 172 143
reflectance 26 band 17 169 146
flow 81 group 14 167 148
use_verb 18 data 44 166 149
flow 81 green 22 165 150
flow 81 blue 18 161 154
image 41 data 44 153 162
data 44 use_verb 18 152 163
dark 11 green 22 152 163
old 24 year 12 148 167
year 12 old 24 146 169
band 17 reflectance 26 146 169
data 44 ns_oo1 13 145 170
green 22 component 27 141 174
relative 16 age 32 140 175

PT: probe term;
occ(PT): PT's frequency of occurrence within the body of the text (highest is 81);
TIC: term-in-context (TIC) which was found in the context of PT within the text;
occ(TIC): TIC's frequency of occurrence within the body of the text (highest is 81);
co-occ(PT,TIC): proximity-weighted co-occurrence value (the relational metric) between PT and TIC;
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Table 2.  The fifty probe terms, each with its frequency of occurrence in the domain sample.  As will be
seen later, not all of these terms are included as probe terms among the terms participating in the top 164
relationships (see Figure 6 and Table 5).  Instead, some of these terms are included only in the contexts of
other terms.  These are shown in parentheses.  Further, some of these terms are not included at all among
the top 164 relationships.  These are shown in square brackets.  The terms "change", "show", and
"combine" are verbs but have no "_verb" tag because in the analyzed text they have no noun usages from
which they must be distinguished.

flow 81
image 44
data 41
color 35
age 32
component 27
reflectance 26
old 24
green 22
tims 21
aa 19
pahoehoe 19
blue 18

use_verb 18
band 17
iron 17
show 17
infrared 16
relative 16
group 14
red 14
area 13
[change] 13
field 13
micron 13
ns_oo1 13

[spectral] 13
thermal 13
(we) 13
young 13
[surface] 12
year 12
dark 11
emittance 11
ka 11
[map_verb] 11
(spectrum) 11
combine 10
[vegetation] 10

(brown) 9
[channel] 9
difference 9
ferric 9
[oxidation] 9
plate 9
[silica] 9
study 9
weathering 9
[unit] 8
visible 8
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(a)

(b)

Figure 4. Relational metric values for the 9075 proximity-weighted co-occurrence relations identified in the
analyzed text. (a) 9075 relational metric values in decreasing order of size, (b) 9075 relational metric values in
decreasing order of size (detail).
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Table 3.  Association matrix extracted from the 789x789 R-matrix implicit in the R-list
database.  The cells in the matrix represent relations among the 21 nodes, and numbers in
the cells are the relational metric values of the relations.  Only the top 40 relations are
shown.  This association matrix corresponds to the list of relations in Table 1 and the
network in Figure 5.
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Figure 5.  Network based on the 40 most important relations in the domain sample.  The top five
relations are shown with bold arcs.  This network corresponds to the list of relations in table 1 and
the association matrix in table 3.
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Figure 6. Network domain model based on the threshold method. The network includes the 164 top
relations, which associate 53 nodes.  Of the 53 nodes, 41 are probe terms. In the Appendix, the terms
(nodes) and relationships (arcs) of this network are described,  and the relative importance of each is
quantified.
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Table 4.  Example of calculation of N, the estimate of node importance used to determine the node order in the
Appendix.  N is a measure of the overall relatedness of each term.  It is equal to the sum of the normalized relational
weights for all relations involving the term, divided by the largest value of N.  Key:  PT=probe term,  TIC=term in
context,   "Norm'd co-occ" is the normalized co-occurrance metric.  That is, the value of the metric is divided by the
maximum metric value of the 9075 relations in R-list:  co-occ(old, flow)=314.

PT or TIC = "flow"

PT                               TIC                     norm'd co-occ   
old flow 1.000
aa flow 0.952
young flow 0.943
pahoehoe flow 0.914
age flow 0.863
flow old 0.768
flow age 0.758
image flow 0.713
flow pahoehoe 0.707
color flow 0.704
data flow 0.691
flow aa 0.672
blue flow 0.653
group flow 0.618
green flow 0.611
flow data 0.592
flow young 0.589
flow image 0.586
flow color 0.548
flow group 0.532
flow green 0.525
flow blue 0.513
show flow 0.433
relative flow 0.430
dark flow 0.398
flow show 0.354
flow relative 0.338
reflectance flow 0.331
year flow 0.328
flow year 0.322
ns_oo1 flow 0.322
area flow 0.315
flow reflectance 0.303
flow area 0.299
flow dark 0.290
iron flow 0.283
red flow 0.271
flow iron 0.268
flow 1935 0.261
use_verb flow 0.258
weathering flow 0.258
ferric flow 0.255
flow brown 0.245
flow basalt    0.239   
Total relatedness of "flow" to others: 22.253

PT or TIC = "image"

PT                               TIC                     norm'd co-occ   
image flow 0.713
color image 0.672
image color 0.662
flow image 0.586
image data 0.487
image tims 0.443
tims image 0.433
data image 0.401
image infrared 0.325
image use_verb 0.309
image field 0.306
use_verb image 0.299
image component 0.290
image age 0.274
aa image 0.274
field image 0.274
ns_oo1 image 0.268
image aa 0.264
age image 0.261
image difference 0.255
difference image 0.255
image ns_oo1 0.245
component image    0.239   
Total relatedness of "image" to others: 8.535

Example calculations of N(node) used in Appendix,
from total relatedness:

N(flow) = 22.253 / 22.253 = 1.000
N(image) = 8.535 / 22.253 = 0.384
etc.
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Table 5.  List of 164 top relationships, sorted by frequency of occurrence of probe terms (PT) then by the normalized
co-occurrence of PT and TIC (term-in-context):  norm'd co-occ(PT,TIC).  This list serves as the starting point for
creation of the object-oriented relational analysis report (Appendix).

PT                            TIC                  norm'd co-occ(PT,TIC)   
flow old 0.77
flow age 0.76
flow pahoehoe 0.71
flow aa 0.67
flow data 0.59
flow young 0.59
flow image 0.59
flow color 0.55
flow group 0.53
flow green 0.53
flow blue 0.51
flow show 0.35
flow relative 0.34
flow year 0.32
flow reflectance 0.30
flow area 0.30
flow dark 0.29
flow iron 0.27
flow 1935 0.26
flow brown 0.25
flow basalt 0.24

image flow 0.71
image color 0.66
image data 0.49
image tims 0.44
image infrared 0.32
image use_verb 0.31
image field 0.31
image component 0.29
image age 0.27
image aa 0.26
image difference 0.25
image ns_oo1 0.25

data flow 0.69
data tims 0.58
data use_verb 0.48
data ns_oo1 0.46
data image 0.40
data age 0.36
data combine 0.32
data color 0.29
data aa 0.26

color flow 0.70
color image 0.67
color age 0.38
color component 0.33
color data 0.30
color pahoehoe 0.27

age flow 0.86
age color 0.43
age relative 0.41
age data 0.34
age image 0.26
age systematic 0.25
age aa 0.25
age band 0.25
age show 0.25
age pahoehoe 0.24

component reflectance 0.43
component band 0.40
component green 0.32
component 3 0.32
component 4 0.31
component image 0.24

reflectance band 0.54
reflectance component 0.38
reflectance flow 0.33
reflectance micron 0.28
reflectance high 0.27

old flow 1.00
old year 0.47
old green 0.39
old 500 0.29
old 1500 0.27
old brown 0.26
old young 0.25

green flow 0.61
green blue 0.61
green component 0.45
green old 0.39
green dark 0.34
green group 0.29
green red 0.24
green 3 0.24

tims data 0.70
tims image 0.43
tims ns_oo1 0.33

aa flow 0.95
aa data 0.32
aa pahoehoe 0.31
aa old 0.28
aa image 0.27
aa age 0.26
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pahoehoe flow 0.91
pahoehoe aa 0.31
pahoehoe color 0.30
pahoehoe age 0.26

blue flow 0.65
blue green 0.61
blue component 0.33
blue color 0.29
blue old 0.28
blue group 0.28

use_verb data 0.53
use_verb image 0.30
use_verb we 0.26
use_verb flow 0.26
use_verb tims 0.25

band reflectance 0.46
band component 0.36
band 4 0.26

iron ferric 0.31
iron flow 0.28

show flow 0.43
show data 0.25
show age 0.25

infrared thermal 0.31
infrared visible 0.30
infrared reflectance 0.24

relative age 0.45
relative flow 0.43
relative band 0.33
relative reflectance 0.29
relative component 0.25

group flow 0.62
group ka 0.33
group green 0.30
group blue 0.29

red component 0.38
red flow 0.27
red brown 0.24

area study 0.38
area flow 0.32

field image 0.27
field we 0.25

micron reflectance 0.35
micron 0_8 0.26

ns_oo1 data 0.58
ns_oo1 tims 0.34
ns_oo1 flow 0.32
ns_oo1 image 0.27

thermal infrared 0.44

young flow 0.94
young old 0.26

year old 0.46
year flow 0.33
year 500 0.29
year 1500 0.27

dark green 0.48
dark flow 0.40
dark old 0.26

emittance spectrum 0.25

ka group 0.32
ka 1_5 0.30
ka 8 0.26

combine data 0.37

difference image 0.25
difference color 0.25

ferric iron 0.40
ferric flow 0.25

plate 1 0.27

study area 0.34

weathering flow 0.26

visible infrared 0.44
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Figure 7. Example of use of an interactive concordance (Thomson, 1992) showing a computer screen
image as it appears while being used to search the original text for the node term, "flow." The window at
the bottom shows some of the contexts around the term "flow" (the rest are available by scrolling) while
the window at the top contains the full text context for any line selected in the bottom window. (In practice,
the windows are made much larger on the computer screen, so as to display more of the contexts.)
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2.412.12
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1.80

8.83
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Figure 8.  Top 164 relationships, combined into inter-class relations (shown as one- or two-way arcs), and
node weights indicating the internal complexity of classes/objects based on the sum of intra-class/object
relational weights.  Nodes without weights have no internal structural relations among the top 164 domain
relations.  Thus, for example, the internal structure of the class/object "flow" is the most elaborated, and
"image" has the second most elaborated internal structure.  Further, the largest sum of inter-class/object
relational weights is between "flow" and "image" indicating their close association in this domain sample.
The 164 relationships and their mapping to class/object relationships are shown in table 6.
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Table 6.  Top 164 relationships mapped to class/object relations, listed in alphabetical order by class/object, and by
co-occ when the PT class/object equals the TIC class/object.  Items not in parentheses are classes/objects, while
items in parentheses are internals of classes/objects.  These relationships are the basis of Figure 8.

PT                                  TIC              norm'd co-occ(PT,TIC)   
aa data 0.32
aa flow 0.95
aa flow(old) 0.28
aa flow(age) 0.26
aa image 0.27
aa pahoehoe 0.31
area flow 0.32
area study 0.38
band(thermal) band(infrared) 0.44
band(visible) band(infrared) 0.44
band(relative) band 0.33
band(infrared) band(thermal) 0.31
band(infrared) band(visible) 0.30
band band(4) 0.26
band component 0.36
band reflectance 0.46
band(infrared) reflectance 0.24
component band 0.40
component component(3) 0.32
component component(4) 0.31
component(relative) component 0.25
component image(green) 0.32
component image 0.24
component reflectance 0.43
data aa 0.26
data(use_verb) data 0.53
data data(use_verb) 0.48
data(combine) data 0.37
data data(combine) 0.32
data(show) data 0.25
data flow 0.69
data flow(age) 0.36
data(use_verb) flow 0.26
data image 0.40
data(use_verb) image 0.30
data image(color) 0.29
data ns_oo1 0.46
data tims 0.58
data(use_verb) tims 0.25
data(use_verb) we 0.26
emittance spectrum 0.25
field image 0.27
field we 0.25
flow aa 0.67
flow(age) aa 0.25
flow area 0.30
flow(age) band 0.25
flow data 0.59
flow(age) data 0.34
flow(age) data(show) 0.25
flow(old) flow 1.00
flow(young) flow 0.94
flow(age) flow 0.86

flow flow(old) 0.77
flow flow(age) 0.76
flow flow(young) 0.59
flow(old) flow(year) 0.47
flow(year) flow(old) 0.46
flow(relative) flow(age) 0.45
flow(relative) flow 0.43
flow(show) flow 0.43
flow(age) flow(relative) 0.41
flow(dark) flow 0.40
flow(ferric) flow(iron) 0.40
flow flow(show) 0.35
flow flow(relative) 0.34
flow(year) flow 0.33
flow flow(year) 0.32
flow(iron) flow(ferric) 0.31
flow(ka) flow(1_5) 0.30
flow(old) flow(500) 0.29
flow(year) flow(500) 0.29
flow(iron) flow 0.28
flow flow(iron) 0.27
flow(old) flow(1500) 0.27
flow(year) flow(1500) 0.27
flow flow(1935) 0.26
flow(ka) flow(8) 0.26
flow(weathering) flow 0.26
flow(young) flow(old) 0.26
flow(ferric) flow 0.25
flow(old) flow(young) 0.25
flow(show) flow(age) 0.25
flow flow(basalt) 0.24
flow group 0.53
flow(ka) group 0.32
flow image 0.59
flow image(color) 0.55
flow image(green) 0.53
flow image(blue) 0.51
flow(age) image(color) 0.43
flow(old) image(green) 0.39
flow image(dark) 0.29
flow(age) image 0.26
flow(old) image(brown) 0.26
flow image(brown) 0.25
flow(age) image(systematic) 0.25
flow pahoehoe 0.71
flow(age) pahoehoe 0.24
flow reflectance 0.30
group flow 0.62
group flow(ka) 0.33
group image(green) 0.30
group image(blue) 0.29
image aa 0.26
image(green) component 0.45
image(red) component 0.38
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image(blue) component 0.33
image(color) component 0.33
image component 0.29
image(green) component(3) 0.24
image data 0.49
image data(infrared) 0.32
image(color) data 0.30
image field 0.31
image flow 0.71
image(color) flow 0.70
image(blue) flow 0.65
image(green) flow 0.61
image(green) flow(old) 0.39
image(color) flow(age) 0.38
image(blue) flow(old) 0.28
image flow(age) 0.27
image(red) flow 0.27
image(dark) flow(old) 0.26
image(green) group 0.29
image(blue) group 0.28
image(color) image 0.67
image image(color) 0.66
image(blue) image(green) 0.61
image(green) image(blue) 0.61
image(dark) image(green) 0.48
image(green) image(dark) 0.34
image image(use_verb) 0.31
image(blue) image(color) 0.29
image image(difference) 0.25
image(difference) image 0.25
image(difference) image(color) 0.25
image(green) image(red) 0.24
image(red) image(brown) 0.24
image ns_oo1 0.25
image(color) pahoehoe 0.27
image tims 0.44
ns_oo1 data 0.58
ns_oo1 flow 0.32
ns_oo1 image 0.27
ns_oo1 tims 0.34
pahoehoe aa 0.31
pahoehoe flow 0.91
pahoehoe flow(age) 0.26
pahoehoe image(color) 0.30
plate plate(1) 0.27
reflectance band 0.54
reflectance component 0.38
reflectance flow 0.33
reflectance(micron) reflectance 0.35
reflectance(relative) reflectance 0.29
reflectance reflectance(micron) 0.28
reflectance reflectance(high) 0.27
reflectance(micron) reflectance(0_8) 0.26
study area 0.34
tims data 0.70
tims image 0.43
tims ns_oo1 0.33
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Figure 9a.  Pathfinder network with 155 links among 100 classes/objects, attributes, attribute values, and
actions.

Figure 9b.  Graph showing that the network in Fig 9a does not use the relations with the highest metric
values.
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Figure 10a.  Pathfinder network with 102 links among 50 probe terms.

Figure 10b.  Graph showing that the network in Fig 10a does not use the relations with the highest metric
values.
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Figure 11a.  Pathfinder network with 137 links among 100 classes/objects.

Figure 11b.  Graph showing that the network in Fig. 11a does not use relations with the highest metric values.
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(a)

(b)

Figure 12.  Comparison of (a) relational data from a typical paired comparison experiment (Schvaneveldt,
Durso, and Dearholt, 1989) and (b) relational metric values derived from verbal data based on proximity-
weighted co-occurrence.
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Figure 13.  Frequency of occurrence of coded words in the original source text, a scientific paper on remote
sensing.  The probe terms, listed in table 2, were selected from among those words with a frequency of
occurrence greater than or equal to eight.
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    <- - - - - - - - - - context of PT1a - - - - - - - - - ->
    <- - - - - - - - - - context of PT1b - - - - - - - - - ->

age <wd> flow <wd> flow color
w1      w2      w3      w4      pt2      w6      PT1a      w7      PT1b      w9      w10      w11      w12      w13       w14   

PT1a 0 1 2 3 4 5 - 5 - 3 2 1 0 0 0
PT1b 0 0 0 1 2 3 - 5 - 5 4 3 2 1 0
    ___________________________________________________________________
sum 0 1 2 4    6   8 - 10 - 8 6 4 2 1 0
Figure 14a.  Illustration of the symmetric method of computing the relational metric value between two
words (e.g., "flow" and "age") when two instances of a probe term (e.g., "flow") are in close proximity.  To
find the relational metric value for R(flow,age), that is, "age" in the context of the probe term (PT) "flow,"
the metric values for each instance of the probe term "flow" relative to "age" are summed, in this case
resulting in a value of 6.  This equals the metric value of "flow" in the context of the probe term "age," as
shown in Figures 14b and 2b, illustrating that this method is, indeed, symmetric.  The context window
here is six words, including the probe term, to the left and right of the probe term.  Active probe term:
PT1a and PT1b.  Terms in context:  w2-4, pt2, w6, w7, w9-13.
<- - - - - - - - - - context of PT2  - - - - - - - - - ->

age <wd> flow <wd> flow color
    w0      w1      w2      w3      w4      PT2      w6      pt1a      w7      pt1b      w9      w10      w11      w12      w13

PT2 1 2 3 4 5 - 5    4   3    2   1 0 0 0 0
Figure 14b.  Illustration of the symmetric method of computing the relational metric value between two
words (e.g., "flow" and "age") when two instances of a term (e.g., "flow") are in close proximity to the probe
term (e.g., "age").  To find the relational metric value for R(age,flow), that is, "flow" in the context of the
probe term "age," the metric values for each instance of "flow" relative to the probe term "age" are
summed, in this case resulting in a value of 6.  Active probe term:  PT2.  Terms in context:  w0-4, w6, pt1a,
w7, pt1b, w9.
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Figure 14c.  Network based on symmetric method of calculating relational metric values.  Note that
arrowheads on relations are not needed since the relations have the same values in both directions.  This
network is very similar to Figure 6, which is based on the asymmetric method.
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(a)

(b)

Figure 15. Correlations between normalized relational metric values and products of normalized frequencies
of occurrence (a) for the most prominent 164 relationships in R-list, and (b) for all 9075 relationships in R-list.



46

(a)

(b)

Figure 16.  Influence of the frequencies of occurrence of related words on the relational metric values
between them, as indicated by the percentage of variance of the relational metric values due to the products
of the frequencies of occurrence of the nodes related.  The influence of the frequencies of occurrence is
lowest for the most prominent relations.  Percentage of variance increases rapidly as the number of top
relations in the domain model increases to about 60, then increases more gradually as the number of
relations approaches 6000.  "Relation number" is the rank order of each relation based on its relational metric
value.  The most prominent relations have the lowest relation numbers.  Compare this figure with figure 4. (a)
Percentage of variance of the relational metric values due to frequencies of the nodes related. (b) Percentage
of variance of the relational metric values due to frequencies of the nodes related (detail).
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Appendix.  Object-oriented relational analysis report, which describes the nodes and relationships in the object-
oriented network shown in Figures 6 and 8.  The report consists of a list of nodes (entities), each with a sublist of
the nodes in its context.  Nodes are listed in order of estimated importance.  N is an estimate of the node's relational
importance.  (See Table 4.)  R is the normalized proximity-weighted co-occurrence metric.  The term "internals", as
used in this appendix, refers to attributes, attribute values, or methods of a class/object.

FORMAT:
node    (N=x.xxx):     definition   ([node] => included in Figure 6 as term-in-context only, not as a probe term)

   related node         R       description of relationship
xxx 0.xx ...
xxx  => appears in two places; intra- or inter-node weight determined by this interpretation
{xxx} => appears in two places;  intra-  and inter-node weight NOT determined by this interpretation

f l ow        (N=1.000)   :      A lateral, surficial outpouring of molten lava from a vent or a fissure;  also, the solidified body of
rock that is so formed; synonymous with lava flow. (Bates and Jackson, 1987)

Relations between "flow" and its attributes and attribute values   :

    Age-related attributes and attribute values   :
age 0.76 attribute of flow; The fundamental issue concerns measuring the ages of flows

using remote sensing techniques.
old 0.77 attribute value of relative age, which is an attribute of flow;
young 0.59 attribute value of relative age, which is an attribute of flow
relative 0.34 The relative reflectance of flows in different spectral bands is systematically

related to the relative age of flows.
year 0.32 age of a flow is measured in years
1935 0.26 historic lava flow from Mauna Loa ; The 1935 flow is adjacent to the 1843 and

1899 flows, and these are the three historic lava flows within the study area.
     Material-related attribute values   

iron 0.27 one of the major constituents of basaltic lava flows;  Iron is oxidized by
weathering of the flow.

basalt 0.24 type of rock which comprises the studied lava flows
    Color-related attribute and attribute value   

{color} {0.55} attribute of flow
brown 0.25 true surface color of certain flows

Methods   :
show 0.35 Flows, flow data, and/or flow data images show spectral features and other effects

of chemical and physical processes, especially systematic effects of weathering
with flow age.

Relations between "flow" and other objects and their internals   :
pahoehoe 0.71 kind of flow distinguished by its ropey texture
aa 0.67 kind of flow distinguished by its blocky texture
data 0.59 collection of remote sensing measurements related to flow
image 0.59 Flows are represented in images.

color 0.55 attribute of image; Image colors vary with flow age.
green 0.53 attribute value of image color that represents selected flow data
blue 0.51 attribute value of image color that represents selected flow data
dark 0.29 quality of colors representing flows
{brown} {0.25} color of certain flows in false color images

group 0.53 age-based collection of flows
area 0.30 region containing flows
reflectance 0.30 ratio of energy reflected by a flow to that incident upon it, which varies over the

surface of a flow
{relative} {0.34} The relative reflectance of flows in different spectral bands is systematically

related to the relative age of flows.
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image    (N=0.384):     two dimensional array of pixels, each assigned a color which represents a numeric data value;

Relations between "image" and its attributes and attribute values   :
color 0.66 attribute of flow images used to judge relative age of flows
difference 0.25 Some components used to create images are the difference between two bands.

Color differences in images indicates different flow ages.

Methods   :
use_verb 0.31 action applied by the researchers to image data, image processing methods, and

systems for gathering image data

Relations between "image" and other objects and their internals   :
flow 0.71 Flows are represented in images.

age 0.27 Relative flow age can be determined from systematic color variations in
multispectral images.

data 0.49 images are created from remote sensing data
infrared 0.32 some of the data used in images is from in the infrared part of the spectrum

TIMS 0.44 system for acquiring image data; kind of image
field 0.31 TIMS images are checked in the field.
component 0.29 Principal components are assigned to red, green, and blue to produce false color

images.
aa 0.26 Aa flows of different ages are more readily differentiated in NS-001 images than

in TIMS images.
(band)

{difference} 0.25 Some components used to create images are the difference between two bands.
Color differences in images indicates different flow ages.

NS-001 0.25 system for acquiring image data; kind of image

data    (N=0.374):     a collection of measurements;

Methods   :
use-verb 0.48 Data are used to assess relative ages of flows, and to map flows.  Methods are

used to process, especially to combine, data.  Tools are used to gather data,
measure effects, and analyze samples.

combine 0.32 TIMS thermal infrared data are combined with NS-001 visible/near infrared/short
wavelength infrared data.

Relations between "data" and other objects and their internals   :
flow 0.69 TIMS and NS-001 scanned lava flows from aircraft to gather remote sensing

data.
age 0.36 The data consist of spectral measurements that are assigned colors to indicate

flow age.
TIMS 0.58 system for acquiring thermal infrared data; kind of data
NS-001 0.46 system for acquiring visible/near infrared/short wavelength infrared data; kind of

data
image 0.40 representation created from data

color 0.29 Data values are represented by image colors.

aa 0.26 TIMS and NS-001 data are used to determine the relative ages of different aa
flows and to distinguish aa from pahoehoe.
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age    (N=0.293):     years since eruption of a lava flow    ;

Relations between "age", its object "flow", other internals of "flow", and objects which inherit from "flow"   :
flow 0.86 Age is an attribute of flow.

relative 0.41 Relative age can be indicated by image color differences.
aa 0.25 Image colors indicate the relative ages of aa flows.
pahoehoe 0.24 Image colors indicate the relative ages of pahoehoe flows.

    Relations between "age" and objects besides "flow" and their internals   :
data 0.34 TIMS and NS-001 data is processed to determine flow age.

show 0.25 Data values and image colors show systematic variations with flow age.
image 0.26 False color images created from the data indicate different flow ages with different

colors.
color 0.43 Age can be indicated by image color.
{show} 0.25 Data values and image colors show systematic variations with flow age.
systematic 0.25 There are systematic weathering effects which show up as a systematic

progression of image colors with increasing flow age.
band 0.25 Reflectance in one band versus another varies with flow age.

green    (N=0.261):     one of the primary colors in the RGB triad   ;

    Relations between "green" and other internals of its object "image"   :
(image)

blue 0.61 In some NS-001 images, pahoehoe flows range in color from blue for younger
ones to blue-green to green-blue to green for older flows, which does not
provide for the best differentiation.

dark 0.34 Dark green is the color of pahoehoe flows which are >4000 years old in certain
NS-001 and TIMS images.

red 0.24 Red and green are two of the three primary colors in RGB color triad.

    Relations between "green" and objects besides "image" and their internals   :
flow 0.61 Flows in various age groups are green, dark green, blue-green, or green-blue in

certain false color images.
old 0.39 In NS-001 images, with principal components assigned to primary image colors,

aa flows 500-1500 years old are light blue-green; those 1500-4000 years old
are green-yellow; and those >4000 years old are dark green.

component 0.45 A numbered component is associated with a primary color such as green.
3 0.24 Channel 3 and component 3 are associated with the color green.

group 0.29 Different shades of green are associated with different flow age groups.

old    (N=0.254):     aged   ;

    Relations between "old", its object "flow", and other internals of "flow"   :
flow 1.00 In this domain sample, the most strongly related entities are "old" and "flow".

The most fundamental idea in the analyzed text is that of old flows.
year 0.47 Flows are X years old, where X is a variable.
500 0.29 Flows 200-500 and 500-1500 years old were differentiated in the images.
1500 0.27 Flows 500-1500 and 1500-4000 years old were differentiated in the images.
young 0.25 Young and old are the two major categories of relative age.

    Relations between "old" and objects besides "flow" and their internals   :
(image)

green 0.39 Old pahoehoe flows are green in the processed NS-001 and TIMS images.
brown 0.26 Older aa flows appear uniformly brown in TIMS images, while younger aa is

well differentiated in a range from reddish-browns to blue-browns in NS-001
images.
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color    (N=0.243):     a characteristic of images and flows which visually distinguishes one part from another;

    Relations between "color" and its object "image"   :
image 0.67 Color is the most important attribute of images in this domain sample.

    Relations between "color" and objects besides "image" and their internals   :
flow 0.70 Flows of various ages are represented in images by various assigned colors.

Flows have natural color, which varies slightly with age.
age 0.38 Image color varies with flow age.

component 0.33 A color may be associated with a component.
data 0.30 Data values are represented in images by colors.
pahoehoe 0.27 Aa and pahoehoe flows of different ages are displayed in different colors.

component    (N=0.216):     a combination of image data from different bands, produced by principal components
analysis, that contains a certain percentage of the total statistical variance in the image;  A component is
assigned a number, and selected ones are assigned the color red, green, or blue.

    Relations between "component" and its internals   :
(component number)

3 0.32 number assigned to a component
4 0.31 number assigned to a component

    Relations between "component" and other objects and their internals   :
reflectance 0.43 Reflectance data from several bands are processed to identify principal

components.
band 0.40 Data from several bands are processed to identify principal components.
image 0.24 Principal components are derived from image data, and are used to create derived

images.
green 0.32 Green is one of the RGB triad of colors assigned to principal components.

aa    (N=0.187):      A Hawaiian term for lava flows typified by a rough, jagged, spinose, clinkery surface. (Bates and
Jackson, 1987)

    Relations between "aa", its superclass "flow", the internals of "flow", and other subclasses of "flow"   :
flow 0.95 generalization of aa

old 0.28 NS-001 data distinguishes old aa flows from one another.
age 0.26 The relative ages of old aa flows are best differentiated in NS-001 images.

pahoehoe 0.31 With age, pahoehoe undergoes physical and chemical changes that differ from
those undergone by aa.

    Relations between "aa" and other objects   :
data 0.32 Remote sensing data can be used to differentiate between young and old aa, and

to distinguish aa from pahoehoe
image 0.27 The appearance of aa flows in multispectral images differs from that of pahoehoe

flows.
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reflectance    (N=0.174):      The ratio of energy reflected by a body to that incident upon it. (Bates and Jackson, 1987)
A radiometric quantity, varying over the surface of a flow, which can be measured in different spectral bands
to produce spectral data.

    Relations between "reflectance" and its attributes and attribute values   :
micron 0.28 unit of measure applied to wavelengths of radiant energy, including reflectance
high 0.27 Older aa flows have higher reflectance toward the red and infrared part of the

spectrum.  Vegetation has higher reflectance in other bands.

    Relations between "reflectance" and other objects   :
band 0.54 range of electromagnetic spectrum in which reflectance or other radiometric

quantity is be measured
component 0.38 Reflectance data from several bands are processed to identify principal

components.
flow 0.33 Reflectance varies over the surface of a flow.

blue    (N=0.173):    one of the primary colors in the RGB triad   ;

    Relations between "blue" and other internals of its object "image"   :
(image)

green 0.61 Blue and green represent flows over a range of ages.  Variants on blue and green
include blue-green and green-blue.

color 0.29 Blue is one of the primary colors in the RGB color triad.  In NS-001 images,
young pahoehoe flows were an indistinguishable blue colored units.

    Relations between "blue" and objects besides "image" and their internals   :
flow 0.64 Blue and variants of blue are typical flow colors in the processed images.

old 0.28 In processed NS-001 images, aa flows of 200-500 years old are blue-brown, and
those of 500-1500 years old are light blue-green.

component 0.33 Blue is assigned to one of the principal components.
group 0.28 Flow age groups were associated with blue and variants of blue, green and its

variants, and reds including brown.

pahoehoe    (N=0.148):      A Hawaiian term for a type of basaltic lava flow typified by a smooth, billowy, or ropy
surface. (Bates and Jackson, 1987)

    Relations between "pahoehoe", its superclass "flow", internals of "flow", and other subclasses of "flow"   :
flow 0.91 generalization of pahoehoe

age 0.26 Relative ages of young pahoehoe flows are more readily seen in TIMS images.
aa 0.31 With age, aa undergoes physical and chemical changes that differ from those

undergone by pahoehoe.

    Relations between "pahoehoe" and the internals of other objects   :
(image)

color 0.30 Aa and pahoehoe flows of different ages are displayed in different colors.

TIMS    (N=0.138):      Thermal Infrared Multispectral Scanner, a system flown on board a NASA C-130B aircraft that
collects thermal infrared data in six spectral channels between 8.2 and 11.7 microns.

    Relations between "TIMS" and other objects   :
data 0.70 data are acquired by TIMS
image 0.43 image data are acquired by TIMS
NS-001 0.33 Like TIMS, NS-001 is a system for acquiring data.  Their spectral

bands/channels differ (see their definitions).
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group    (N=0.133):     age-based collection of flows;

    Relations between "group" and other objects and their internals   :
flow 0.62 Flows are grouped according to age in five age groups:

I: 200-500 years old (0.2-0.5 ka)
II: 500-1500 years old (0.5-1.5 ka)
III: 1500-4000 years old (1.5-4 ka)
IV: 4000-8000 years old (4-8 ka)
V: >8000 years old (>8 ka)

ka 0.33 thousands of years before the present; A range of ages defines a group (see
preceding table).

(image)
green 0.30 Variants of green are associated with several flow age groups.
blue 0.29 Variants of blue are associated with several flow age groups.

band    (N=0.117):      A frequency or wavelength interval . (Bates and Jackson, 1987)  Spectral data acquisition systems
such as TIMS and NS-001 have sensors which are sensitive to different bands.

    Relations between "band" and its attributes and attribute values   :
(band number)

4 0.26 number assigned to a band of TIMS and a different band of NS-001

    Relations between "band" and other objects   :
reflectance 0.46 radiometric quantity measured in several spectral bands
component 0.36 Data from several bands are processed to identify principal components.

NS-001    (N=0.115):      A multispectral scanner developed by NASA as a Thematic Mapper Simulator.  It has been
flown on board a NASA C-130B aircraft to collect multispectral data in the visible, and short and long
wavelength infrared regions corresponding to the seven Landsat-4 and -5 Thematic Mapper bands.  In
addition, NS-001 has an eighth band in the short wavelength infrared between 1.13 and 1.35 microns.

    Relations between "NS-001" and other objects   :
data 0.58 Multispectral remote sensing data is acquired by NS-001.
TIMS 0.34 like NS-001, a system for acquiring data; Their spectral bands/channels differ (see

their definitions).
flow 0.32 NS-001 data were acquired from Hawaiian lava flows.
image 0.27 Old pahoehoe flows appear greener in NS-001 images, given the processing used

in this particular study.

relative    (N=0.112):     comparative; relating each to the other   ;

    Relations between "relative", its object "flow", and other internals of "flow"   :
flow 0.43 Relative ages of flows are displayed in color images created using TIMS and NS-

001 data.
age 0.45 Relative ages of flows are displayed in color images created using TIMS and NS-

001 data.

Relations between "relative age" and objects besides "flow"   :
band 0.33 Reflectance in one band relative to another indicates relative flow age.
reflectance 0.29 Reflectance in one band relative to another indicates relative flow age.

    Relations between "relative" and its other object "component"   :
component 0.25 Relative contributions from each of three components determines image color.
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use (verb)    (N=0.107):     bring into action or service   ;

    Relations between "use (verb)" and the users   :
we 0.26 We (the researchers) used remote sensing techniques, combining TIMS and

NS-001 data, to measure weather effects in order to determine relative ages of
lava flows.  We also used scanning electron microscopy to analyze field
samples in checking our results.

Relations between "use (verb)" and the objects being used (that is, objects in which "use (verb)" is a method)   :
data 0.53 The researchers used data to assess and map the relative ages of flows.
image 0.30 Researchers used data displayed as images.
flow 0.26 The relative ages of flows can be determined using TIMS and NS-001 data.
TIMS 0.25 TIMS can be combined with NS-001 data using remote sensing techniques.

TIMS data can be used to map young pahoehoe flows.

year    (N=0.096):     unit of flow age;

    Relations between "year", its object "flow", and other internals of "flow"   :
flow 0.33 Age of a flow is measured in years.

old 0.46 an attribute value of age; Year is a unit of age.
500 0.29 Flows in group I were 200-500 years old, and those in group II were 500-1500

years old.
1500 0.27 Flows in group II were 500-1500 years old, and those in group III were 1500-

4000 years old.

infrared    (N=0.093):     part of the emittance spectrum of the lava which constitutes the flow; includes reflected
infrared and thermal infrared;   

    Relations between "infrared", its object "band", and the internals of "band"   :
(band) (note:  "infrared", "thermal", and "visible" imply different upper and lower bounds of

bands within the spectrum)
thermal 0.31 TIMS gathers data in thermal infrared bands.
visible 0.30 NS-001 gathers data in visible, near-infrared, and short-wave infrared bands..

    Relations between "infrared" and objects besides "band"   :
reflectance 0.24 NS-001 measures infrared reflectance, while TIMS measures thermal infrared.

young    (N=0.092):     relatively recently erupted; not aged   ;

    Relations between "young", its object "flow", and other internals of "flow"   :
flow 0.94 Young flows are relatively unweathered. Young aa flows are differentiated by age

using both NS-001 and TIMS data, but young pahoehoe flows are only readily
differentiated using TIMS data.

old 0.26 Old flows differ from young flows because of physical and chemical changes due
to weathering.
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dark    (N=0.080):     absence of light   ;    not light in color   ;

    Relations between "dark" and other internals of its object "image"   :
green 0.48 Dark green is the color of the oldest pahoehoe flows in both NS-001 and

stretched TIMS images. The youngest aa flows are dark blue-green in stretched
TIMS images.

    Relations between "dark" and objects besides "image" and their internals   :
flow 0.40 (see "green" above) Recent flows are relatively unweathered and are dark to the

eye.
old 0.26 Dark green is the color of the oldest pahoehoe flows in both NS-001 and

stretched TIMS images.

show     (N=0.069):     exhibit, demonstrate, make evident   ;

    Relations between "show", its object "flow", and other internals of "flow"   :
flow 0.43 Flows, flow data, and flow images show systematic effects with flow age.

age 0.25 Various measurements show systematic changes with flow age.

    Relations between "show" and its other object "data"   :
data 0.25 Flow data show systematic effects with flow age.  Reflectance data shows the

degree of oxidation.

area    (N=0.060):     region of volcanic terrain;   

    Relations between "area" and other objects   :
study 0.38 A study is conducted in a particular area.
flow 0.32 An area of interest can contain many lava flows.

iron    (N=0.057):      metallic element which is one of two major components of basaltic lava flows (the other is
magnesium)

    Relations between "iron", its object "flow, and other internals of "flow"   :
flow 0.28 Weathered flows have higher ferric iron content.

ferric 0.31 Ferric iron is a weathering product that forms on the surface of flows.  The ferric
iron content in a field sample of a flow can be measured using wet chemical
analyses.  Ferric iron content increases systematically with flow age.

ka    (N=0.054):     unit of measure of time; thousands of years before the present   ;

    Relations between "ka" and internals of its object "flow"   :
(flow / age)

1.5 0.30 Groups II and III have 1.5 ka as lower and upper boundaries, respectively.
8 0.26 Groups IV and V have 8 ka as lower and upper boundaries, respectively.

    Relations between "ka" and objects besides "flow"   :
group 0.32 The age boundaries of a flow group are measured in ka, that is, thousands of

years before the present.
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red    (N=0.051):     one of the primary colors in the RGB triad   ;

    Relations between "red" and other objects and their internals   :
component 0.38 Red, one of the three primary colors in the RGB triad, is associated with one of

the principal components.
flow 0.27 Flows appear more red to the eye as they age, due to the oxidation of iron.  In

combined TIMS and NS-001 images, older flows become more rusty or redder
with age.

(image)
brown 0.24 In TIMS images, the youngest prehistoric aa flows (0.2-1.5 ka) are reddish-

brown.

ferric    (N=0.043):     designating or of iron with a valence of three   ;

    Relations between "ferric", its object "flow", and other internals of "flow"   :
flow 0.25 Ferric iron is a weathering product of basaltic lava flows.

iron 0.40 (same as above)

micron    (N=0.040):     a unit of length; one thousandth of a millimeter or millionth of a meter   ;

    Relations between "micron", its object "reflectance", and other internals of "reflectance"   :
reflectance 0.35 The wavelength of reflectance is measured in microns.

0.8 0.26 Increasingly older flows develop higher reflectance at 0.8 microns.

field    (N=0.037):     the site, or pertaining to the site, of the lava flows   ;

    Relations between "field" and other objects   :
image 0.27 Remote sensing images were checked against field images and observations.
we 0.25 We (the researchers) studied the study area in the field to check findings from

remote sensing data.

difference    (N=0.034):     element of dissimilarity   ;

    Relations between "difference", its object "image", and other internals of "image"   :
image 0.25 Differences in image colors correspond to differences in flow ages.

color 0.25 (same as above)

[brown]    (N=0.034):     a color which is a combination of red with some green and/or blue   ;

    Relations between "brown" and internals of its object "image"   :
(image)

red 0.24 Older aa flows appear uniformly brown in TIMS images, while younger aa is
well differentiated in a range from reddish-browns to blue-browns in NS-001
images.

    Relations between "brown" and other objects and their internals   :
flow 0.25 Older aa flows appear uniformly brown in TIMS images, while younger aa is

well differentiated in a range from reddish-browns to blue-browns in NS-001
images.

old 0.26 (same as above)
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thermal    (N=0.034):     having to do with heat   ;

    Relations between "thermal" and internals of its object "band"   :
(band) (note:  "infrared", "thermal", and "visible" imply different upper and lower bounds of

bands within the spectrum)
infrared 0.44 TIMS gathers data in thermal infrared bands.

vis ib le    (N=0.033):     part of the emittance spectrum of the lava which constitutes the flow    ;

    Relations between "visible" and internals of its object "band"   :
(band) (note:  "infrared", "thermal", and "visible" imply different upper and lower bounds of

bands within the spectrum)
infrared 0.44 NS-001 gathers data in visible, near-infrared, and short-wave infrared bands.

study    (N=0.032):     a systematic investigation;   

    Relation between "study" and other objects   :
area 0.34 A study is conducted in a particular area.

combine    (N=0.031):     integration using Karhunen-Loeve transformations, that is, principal components analysis
(PCA)   ;

    Relations between "combine" and its object "data"   :
data 0.37 The researchers combined data from TIMS and NS-001 because TIMS cannot

differentiate among old aa flows, but NS-001 can, and NS-001 cannot
differentiate young pahoehoe flows, but TIMS can.  (They each can
differentiate among young aa flows and among old pahoehoe flows.)

[we]    (N=0.023):     the researchers themselves   ;

    Relations between "we" and other objects and their internals   :
(data;  methods;  equipment)

use_verb 0.26 We (the researchers) used remote sensing techniques, combining TIMS and NS-
001 data, to measure weather effects in order to determine relative ages of lava
flows.  We also used scanning electron microscopy to analyze field samples in
checking our results.

field 0.25 We (the researchers) studied the study area in the field to check findings from
remote sensing data.

plate    (N=0.012):     full page illustration   ;

    Relations between "plate" and its internals   :
(number)

1 0.27 Plate 1 is a geologic map of the Mauna Loa test site.

[high]    (N=0.012):     great in intensity   ;

    Relations between "high" and its object "reflectance"   :
reflectance 0.27 Older aa flows have higher reflectance toward the red and infrared part of the

spectrum.  Vegetation has higher reflectance in other bands.

weathering    (N=0.012):     physical and chemical effects of weather on rock surfaces   ;

    Relations between "weathering" and its object "flow"   :
flow 0.26 There are systematic weathering effects which show up as a systematic

progression of image colors with increasing flow age.
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[spectrum]    (N=0.011):     electromagnetic spectrum, the entire range of wavelengths or frequencies of
electromagnetic radiation   ;

    Relations between "spectrum" and its subclasses   :
emittance 0.25 Data from the reflectance and emittance part of the spectrum were combined.

[systematic]    (N=0.011):     orderly   ;

    Relations between "systematic" and internals of its object "flow"   :
(flow)

age 0.25 Flows, flow data, and/or flow data images show spectral features and other effects
of physical processes, especially systematic effects with flow age.

emittance    (N=0.011):     ratio of emitted radiant flux per unit area of a substance to that of a blackbody radiator of the
same temperature;  The radiance of a surface is a function of both its temperature and spectral emittance.
Emittance is related to the composition of a surface.   

    Relations between "emittance" and its superclass, "spectrum"   :
spectrum 0.25 Data from the reflectance and emittance part of the spectrum were combined.

[basalt]    (N=0.011):     a volcanic rock composed largely of iron, magnesium, and calcium    ;

    Relations between "basalt" and its object, "flow"   :
flow 0.24 The studied lava flows consist of basalt.




